19/02/2020

Preliminary Site Investigation St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara

Ref: P1677-R-003-PSI-Rev0

Written by: Jake Duck (Environmental Scientist) Reviewed & Approved by: Malcolm Adrien (Environmental Services Manager) Email: <u>office@vclab.com.au</u> Client: Catholic Diocese of Maitland-Newcastle

Prepared for: Catholic Diocese of Maitland-Newcastle C/- Webber Architects 426 Hunter Street Newcastle NSW 2300 Ph: 02 4926 1078 Email: sandra@webberarchitects.com Web: www.webberarchitects.com

Prepared by:

Valley Civilab Pty Ltd ABN 50 103 355 531 3/62 Sandringham Avenue PO Box 3127 Thornton NSW 2322 Ph: (02) 4966 1844 Fax: (02) 4966 1855 Email: office@vclab.com.au Web: www.valleycivilab.com.au

Project Details

Site Address:	St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara		
Project Type:	Preliminary Site Investigation		
Project No.	Report Type Report No.		
P1677	PSI 3		

Report Register

Revision Number	Reported By	Reviewed By	Date
Rev0	JD	MA	19/2/2020

We confirm that the following report has been produced for Catholic Diocese of Maitland-Newcastle, based on the described methods and conditions within.

For and on behalf of Valley Civilab Pty Ltd,

M W.

Malcolm Adrien Environmental Services Manager

Executive Summary

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara NSW (herein referred to as the site).

The section of the site undergoing assessment currently consists of a gravel carpark, surrounded by grassed areas and pre-existing G Block Hall belonging to St James Primary School. The client has provided plans for the intended development of three new proposed buildings (Blocks A1, A2 and B), a new carpark and circulation road and a new footpath and forecourt across the entire site.

This PSI includes the following elements:

- Review of historical aerial images of the site and surrounding area;
- Compilation of a historical title summary;
- Review of a Section 10.7 Planning Certificate;
- Review of publicly available environmental databases and legislative instruments;
- Site inspection and interview with knowledgeable site representative (if available);
- A preliminary Conceptual Site Model (CSM) with assessment of source-pathway-receptor linkages; and
- Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required.

With use of a VC supplied drill rig, a total of thirteen (13) soil samples (including one (1) duplicate sample for QA/QC purposes) were collected from six (6) boreholes drilled to a maximum depth of approximately 2.0m and sent to external laboratory SGS to be chemically analysed for a range of contaminants to determine site suitability in comparison to guidelines relevant with the proposed land use.

Results of the laboratory analysis indicate the material meets the most sensitive land use criteria presented in the NEPM for HIL-A/HSL-A Residential land use which is applicable to this re-development of a Primary School. No visual sources or signs of gross contamination were identified during site inspection or intrusive investigation and as such, no further investigation or sampling is considered necessary.

Desktop review of available information and site inspection including a limited soil investigation have allowed assessment of potential health and environmental issues relating to the site. Key findings were:

- 1) Potential contamination sources at the site are limited based on area land use;
- 2) Visible signs of gross contamination were not observed during site inspection and intrusive works;
- 3) Contamination in shallow soils was not identified at any of the sampling locations;
- 4) Contamination in deep soils was not identified at any of the sampling locations.

In summary, based on the desktop study and limited intrusive sampling conducted on the Site, no indication of gross contamination has been identified which would constrain the expansive development of the Site under its current residential A land use criterion as a primary school and proposed use as an early education centre.

Table of Contents

1	Ir	ntro	pduction	1
	1.1		Background	1
	1.2		Objectives	1
	1.3		Scope of Works	1
	1	3.1	1 Preliminary Site Investigation	1
	1	3.2	2 Limited Sampling	2
2	S	ite D	Description	3
	2.1		Site and Lot identification	3
	2.2		Surrounding Land Use	4
3	B	Back	ground Data Review and Database Searches	4
	3.1		Summary of ownership and site use	4
	3.2		Historical Photographs	6
	3.3		Site Setting	7
	3.4		Topography and hydrology	7
	3	8.4.1	1 Lithology and Geology	7
	3	8.4.2	2 Hydrogeology	7
	3.5		Chemical storage and waste production/disposal	8
	3.6		Environmental incident history/register	8
	3.7		Online Database Searches	8
	3	8.7.1	1 Current and Former Environmental Protection Licenses	8
	3	8.7.2	2 Heritage	9
	3	8.7.3	3 Contaminated Land Records	9
	3	8.7.4	4 Naturally Occurring Asbestos	9
4	S	ite Ir	Inspection	9
5	S	ioil Ir	Investigation	10
	5.1		Soil sampling	10
	5.2		Assessment Criteria	10
	5.3		Analytical Results	11
6	A	Analy	lytical Data Quality Assessment	11

	6.1	Sample Collection, Storage, Transport and Analysis	11
	6.1.1	1 General	11
	6.1.2	2 Holding Times	12
	6.1.3	3 Sample Transport and Storage temperature	12
	6.2	Field Intra-Laboratory Duplicate Assessment	12
	6.3	Laboratory Quality Assurance and Quality Control	12
	6.4	Data Quality Summary	12
7	Preli	iminary Conceptual Site Model	13
	7.1	Potential Sources and Associated Contaminants of Concern	13
	7.2	Potential Receptors and Pathways	13
	7.3	SPR Linkage Assessment	13
8	Con	clusions	13

ANNEXES

- Annex A Figures
- Annex B S10.7 Planning Certificate
- Annex C Historical Title Documents
- Annex D Lotsearch Report
- Annex E Borelogs
- Annex F Tabulated Soil Results
- Annex G Laboratory Results
- Annex H Photographic Log

1 Introduction

1.1 Background

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara ,NSW (herein referred to as the site).

The section of the site undergoing assessment currently consists of a gravel carpark, surrounded by grassed areas and pre-existing G Block Hall belonging to St James Primary School. The client has provided plans for the intended development of three new proposed buildings (Blocks A1, A2 and B), a new carpark and circulation road and a new footpath and forecourt across the entire site. The Preliminary Site Investigation is required for due diligence purposes as part of the development application.

A Site Features Plan is presented as *Figure 1* of *Annex A*.

1.2 Objectives

The objectives of this PSI were to investigate potential contaminant sources, pathways and receptors in relation to the site as well as inform preliminary consideration of potential risks to human health and/or the environment within the context of the most sensitive land use. The Site is intended to have a dual Commercial/Residential Land Use. For the purpose of the investigation, HIL A criteria has been adopted as the most sensitive land use.

This report has been prepared in general accordance with provisions for a PSI as defined within the *National Environment Protection Measure* (NEPC 2013), *AS 4482.1-1997 Guide to the sampling and Investigation of potentially contaminated soil* and the *Guidelines for Consultants Reporting on Contaminated Sites* (NSW EPA 1997).

All information collected informed the development of the preliminary conceptual site model which provides a representation of potential contamination sources, receptors and exposure pathways between these sources and receptors.

1.3 Scope of Works

1.3.1 Preliminary Site Investigation

This PSI includes the following elements:

- Review of historical aerial images of the site and surrounding area;
- Compilation of a historical title summary;
- Review of a Section 10.7 Planning Certificate;
- Review of publicly available environmental databases and legislative instruments;
- Site inspection and interview with knowledgeable site representative (if available);
- A preliminary Conceptual Site Model (CSM) with assessment of source-pathway-receptor linkages; and

• Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required

1.3.2 Limited Sampling

Limited Sampling consisted of the collection of a total of thirteen (13) soil samples (including one duplicate sample for QA/QC purposes) from six (6) boreholes, drilled to a maximum depth of approximately 2.0m BGL using a VC supplied drill rig to determine site suitability for the proposed land use. Samples were analysed for the presence of the following analytes:

• Benzene, Toluene, Ethyl Benzene & Xylene (BTEX);

technical & Environmental Services

- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg);
- Organochlorine Pesticides (OCP) & Organophosphorus Pesticides (OPP); and
- Polychlorinated Biphenyls (PCB).

Quality Assurance comprised of the following;

- Collection of a duplicate sample at a rate of 1 per 20 samples.
- One rinsate solution per day.

2 Site Description

2.1 Site and Lot identification

The site is located at St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara NSW, legally identified as Lot 12 DP 560852 and Lot 131 DP 262057. The site forms a rectangular shaped block of approximately 29,080m², adjacent to Vista Parade along the South Western boundary (SIX Maps, 2019).

A summary of site information is provided in *Table 1* below.

Table 1 - Site Identification	Table	1 - Site	Identification
-------------------------------	-------	-----------------	----------------

Item	Description	
Current Site Owner	Trustees of the Roman Catholic Church for the Diocese of Maitland	
Site Address	St James Primary School (St Nicholas EEC) — 30 Vista Parade, Kotara	
Current Zoning	Zone R2 Low Density Residential	
Legal Description	Lot 12 DP 560852	
	Lot 131 DP 262057	
Local Government Authority	Newcastle City Council	
Site Area	Approximately 29,080 m ²	
Elevation	33m Above Sea Level (ASL)	
Geographical Location	151°42'4.12"E	
(GDA94-MGA56)	32°56'52.47"S	

Review of The Newcastle Local Environmental Plan (LEP) 2012 together with the Planning Certificate under Section 10.7 Part 2 and 5 of the Environmental Planning and Assessment Act 1979 (attached as *Annex B*) provides the following information:

- 1) The site is not affected by heritage items;
- 2) The site and/or adjacent lots are not affected by land reserved for acquisition;
- 3) The site is not affected by environmentally sensitive land or critical habitat;
- 4) The site and/or adjacent lots are/contain flood prone land. Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development on flood prone land.
- 5) There are no prescribed matters under section 59(2) of the Contaminated Land Management Act 1997 to be disclosed.

Review of the CSIRO Acid Sulfate Resource Information Service (ASRIS, 2008) identifies the site as being within an unassessed area of Acid Sulfate Soils.

2.2 Surrounding Land Use

The site is located predominantly within a residential area of Kotara. Review of satellite imagery identified surrounding land uses as summarised in *Table 2* below.

Direction	Land Use	Distance
North	Residential dwellings	Adjacent
East	Residential dwellings	Adjacent
South	Residential	Adjacent
West	Residential	Adjacent

Table 2 - Summary of surrounding land uses

3 Background Data Review and Database Searches

3.1 Summary of ownership and site use

Historical title searches completed for the site provide a summary of ownership as described in *Table 3* below.

Table 3 - Summary of site ownership

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
14.08.1929 (1929 to 1956)	The Scottish Australian Mining Company Limited	Vol 4312 Fol 88 Now Vol 6102 Fol 167
09.07.1956 (1956 to 1964)	Hunter District Industries Pty Limited	Vol 6102 Fol 167 Now Vol 9881 Fol 9
14.10.1964 (1964 to 1967)	Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 9881 Fol 9 Now Vol 10684 Fol 82
23.11.1967 (1967 to 1970)	William Henry Hudson (Master Builder)	Vol 10684 Fol 82
02.03.1970 (1970 to 1973)	W.H. Hudson Developments Pty Limited	Vol 10684 Fol 82 Now Vol 12313 Fol 173
20.11.1973 (1973 to date)	# Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 12313 Fol 173 Now 12/560852

Historical title documents sourced as part of this assessment are presented as Annex C.

3.2 Historical Photographs

Historical aerials and satellite images dating 1954 – 2019 provide a summary of development at the site and within the surrounding area. Historical images are presented as part of *Annex D* and a summary of review in *Table 4* below.

Table 4 - Historical Aerial Review

Date	Summary
1954	The image dated 1954 is an excerpt from a low resolution black and white aerial photograph depicting the site and surrounding area. At this time, the site is vegetated vacant land with some minor commercial development to the south-western region of the area surrounding the site.
1965	The image dated 1965 is an excerpt from a high resolution black and white aerial photograph depicting the site and surrounding area. The site remains undeveloped as per the 1954 image, major residential development is seen to the immediate west of the site.
1976	The image dated 1976 is an excerpt from a high resolution colour aerial photograph depicting the site and surrounding area. The site remains undeveloped as per the 1954 and 1965 images, with some clearing of vegetation to the south of the site. Major residential development is seen to the immediate east of the site and development of St Phillips Church to the south of Vista Parade.
1983	The image dated 1983 is a low-resolution colour aerial image depicting the site and surrounding area. At this time, the development of St James PS can be depicted at the site. Surrounding residential areas remain consistent to the 1976 image.
1993	The image dated 1993 remains consistent with the 1983 image.
2007	The image dated 2007 is a high-resolution colour satellite image depicting the site and surrounding area. The site remains consistent to previous images with the addition of the netball/basketball courts to the south of the St James PS school buildings. Surrounding residential areas remain consistent to the 1983-1994 images.
2014	The image dated 2014 is a high-resolution colour satellite image depicting the site and surrounding area. Major development is apparent at the site, with the addition of a cola, covering the netball/basketball courts, additional coverage across the site and the development of the hall, parking area and connecting road to the existing St James PS buildings to the north.

Date	Summary
2018	The image dated 2018 is a low-resolution colour satellite image depicting the site and surrounding area. Some minor development within the site is apparent. Surrounding areas appear consistent to previous images.
2019	The image dated 2019 is a high-resolution colour satellite image depicting the site and surrounding area. Site and surrounding areas appear consistent to the 2018 image.

3.3 Site Setting

3.4 Topography and hydrology

Reference to the Newcastle Soil Landscape Map indicates that the site is located within the Cockle Creek Landscape. The landscape is characterized by narrow floodplains, alluvial fan deposits and broad delta deposits in the Awaba Hills. Review of Google Earth Pro (2019) indicates the site slightly slopes from 41 Above Sea Level (ASL) in the Eastern corner of the lot, to 32m ASL in the eastern corner. The closest surface water body identified is Styx Creek which runs adjacent to Grayson Avenue on the North-Western boundary of the site.

3.4.1 Lithology and Geology

Reference to the Newcastle Soil Landscape Map indicates that the site is located within the Cockle Creek Landscape. The landscape is characterized by narrow floodplains, alluvial fan deposits and broad delta deposits in the Awaba Hills.

Review of the NSW Department of Industry, Resources & Energy database; Newcastle 1: 250,000 Geological Sheet indicates that the site lies on the Newcastle Coal Measures. Typical lithology includes Conglomerate, Sandstone, tuff, shale and coal.

3.4.2 Hydrogeology

Review of the NSW Department of Primary Industries – Office of Water / Water Administration Ministerial Corporation database identified two registered bores within 1.5km of the site. Bore details are presented in *Table 5* below.

Bore ID	Construction Date	Location	Depth (mbgl)	Purpose
GW057772	01/02/1981	597m North	24.00	Recreation
				(groundwater)
GW061223	01/06/1985	1501m North East	36.50	Domestic

Table 5 - Groundwater Bore Details

Groundwater data for the identified bores were not available for review at the time of this report.

3.5 Chemical storage and waste production/disposal

The results of the SafeWork Dangerous Goods Search were not included as part of this report due to the historical and ongoing land use of the Site.

3.6 Environmental incident history/register

Sources to inform consideration of potential environment incidents at the site were not identified as part of this investigation.

3.7 Online Database Searches

3.7.1 Current and Former Environmental Protection Licenses

A review of the licenced activities under the Protection of the Environment Operations act 1997 was completed on the 11th February 2020.

A number of NSW EPA licensed activities have been conducted within proximity to the Site. The tables below list both former and current licensed activities and the type of licensed activity conducted.

Table 6 - Current Licensed EPA Activities

EPL	Organisation	Activity	Approximate Distance from Site
4965	SYDNEY WATER CORPORATION	Other activities	3m West
6332	LAKE MACQUARIE CITY COUNCIL	Other activities	246m South West
12208	SYDNEY TRAINS	Railway systems activities	North West

Table 7 - Former Licensed EPA Activities

License Number	Organisation	Activity	Approximate Distance from Site
4653	LUHRMANN	Other Activities / Non Scheduled	On-site
	ENVIRONMENT	Activity - Application of Herbicides	
	MANAGEMENT PTY LTD		
4838	Robert Orchard	Other Activities / Non Scheduled	On-Site
		Activity - Application of Herbicides	
6630	SYDNEY WEED & PEST	Other Activities / Non Scheduled	On-Site
	MANAGEMENT PTY LTD	Activity - Application of Herbicides	

3.7.2 Heritage

Review of the Heritage Data Source - Planning & Environment, indicates the site is not affected by heritage items. The closest registered heritage item is an EPI Heritage item; 'Raspberry Gully Line Railway' situated 229m south-west of the Site. Registered heritage items within the area are described in *Table 8* below.

Table 8 - Heritage Item Summary

Heritage Item Number	Description	Approximate Distance from Site
-	Raspberry Gully Line Railway	229m South West
-	South Waratah Colliery	737m South West

A figure detailing locations of heritage items listed above is presented within Lotsearch Report in *Annex D*.

3.7.3 Contaminated Land Records

A review of the NSW EPA Contaminated Land Record of Notices was completed on 11th February 2020. This review identified that the site is not subject to regulation by the NSW EPA under Section 60 of the *Contaminated Land Management (CLM) Act 1997* and similarly that there are no sites within the surrounding area subject to regulation under the *CLM Act 1997*.

A review of the NSW EPA List of Contaminated Sites was completed 11th February 2020. This review identified that the site has not been notified to the EPA as a contaminated site and similarly that there are no sites within the surrounding area that have been notified. The findings of these reviews indicate that the site is unlikely to be impacted by contamination known to the EPA.

3.7.4 Naturally Occurring Asbestos

NSW Department of Industry, Resources & Energy (2016) identifies that the site does not fall in an area known to contain naturally occurring asbestos.

4 Site Inspection

Two Valley Civilab environmental scientists experienced in contaminated site assessments visited the Site 7th February 2019. Site inspection identified a sampling area consisting of a gravel carpark surrounded by grassed fields and a driveway adjacent to pre-existing G Block Hall connecting to Vista Parade at the southern boundary of the site. No obvious sings of contamination were visually identified during the site inspection or field investigation.

As stated in Section 1.3, a soil investigation was conducted for contaminants of concern. The sampling density and analytical schedule generated as part of this intrusive investigation is only intended to supplement findings from the desktop review of information and is not intended to meet the minimum requirements of a Detailed Site Investigation (DSI) as outlined within the *NSW Office of Environment and Heritage: Guidelines for Consultants Reporting on Contaminated Sites (2011).*

All works were conducted in accordance with Valley Civilab's relevant Standard Operating Procedures (SOPs). Methodologies are outlined in the following sub-sections. Borelogs are presented in *Annex E*, Soil Investigation locations are presented in *Figure 1* of *Annex A*.

5.1 Soil sampling

Limited Sampling consisted of the collection of a total of thirteen (13) soil samples (including one duplicate sample for QA/QC purposes) from six (6) boreholes, drilled to a maximum depth of approximately 2.0m BGL using a VC supplied drill rig to determine site suitability for the proposed land use. Samples were analysed for the presence of the following analytes:

- Benzene, Toluene, Ethyl Benzene & Xylene (BTEX);
- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg);
- Organochlorine Pesticides (OCP) & Organophosphorus Pesticides (OPP); and
- Polychlorinated Biphenyls (PCB).

Quality Assurance comprised of the following;

- Collection of a duplicate sample at a rate of 1 per 20 samples.
- One rinsate solution per day.

5.2 Assessment Criteria

Analytical data was screened against relevant Tier 1 Trigger Values as defined or referenced within the NEPM 2013 Schedule B1 for Residential A land use. Specifically:

- 1) Health Investigation Levels for Residential A land use (HIL-A) for heavy metals, PAHs, OCP, OPP and PCBs were derived from *Table 1A (1)*;
- 2) Health Screening Levels were derived from CRC Care Technical Report 10 Health screening levels for petroleum hydrocarbons in soil and groundwater – Summary (Friebel and Nadebaum 2011) for sand-based soils in Residential land use (HSL-A) for TRH, BTEX and Naphthalene. These include criteria for considering potential vapour intrusion defined in Table B3 and criteria for direct contact defined in Table B4;
- 3) Management Limits from Table 1B (7) for TPH fractions F1-F4 in soil for Residential land use;
- 4) Ecological investigation levels (EILs) for inorganics to assess risks to ecological receptors from Table 1B(4 and 5); and
- 5) Ecological screening levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in coarse soil for Residential A land use from Table 1B(6).

HIL and HSL assessment criteria address potential health risks to receptors associated with potential contamination.

As the proposed development consists of the expansion of the primary school, the most sensitive land use criteria provided in the NEPM has been adopted.

5.3 Analytical Results

A tabulated assessment of analytical results against assessment criteria is presented in Tables 1 - 2 within *Annex F* with laboratory reports presented in *Annex G*.

- Results of the laboratory analysis returned concentrations below the Limit of Reporting (LOR) for BTEX, OCP, OPP and PCB.
- All heavy metal results were below HIL-A criteria.
- Concentrations above the LOR for F2 and F3 total recoverable hydrocarbons (TRH) were reported for Samples BH9_0.7-0.8 and BH10_0.8-1.0, however these values still were below HIL-A Criteria. All remaining samples were reported below the LOR for TRH.
- Concentrations above the LOR were reported in five samples for Total PAH and in Benzo(a)pyrene for sample BH12_0.15-0.25, however these values were all below HIL-A Criteria. All remaining samples were reported below the LOR for PAH.

The results of the analysis indicate the soils sampled for the targeted assessment area meet the HIL-A criteria for residential A in which is the most sensitive land use criteria provided in the NEPM.

6 Analytical Data Quality Assessment

The quality of analytical data presented within this report has been assessed with reference to the following issues:

- 1) Sampling technique;
- 2) Preservation and storage of samples upon collection and transport to the laboratory;
- 3) Sample holding times;
- 4) Analytical procedures;
- 5) Laboratory limit of reporting (LOR);
- 6) Laboratory quality assurance (QA) procedures; and
- 7) The occurrence of apparently unusual or anomalous results.

A review of these items was conducted to assess data in terms of completeness, representativeness, comparability, accuracy and precision. A discussion of the data quality assessment related to the items listed above is provided in the subsections that follow.

6.1 Sample Collection, Storage, Transport and Analysis

6.1.1 General

Samples were collected, stored and transported to the laboratory in accordance with Valley Civilab's standard operating procedures which are consistent with guidelines provided in the ASC NEPM (2013). All samples were collected in appropriate containers provided by the laboratory.

6.1.2 Holding Times

Laboratory analysis was undertaken within specified holding times in accordance with Schedule B3 of the ASC NEPM (2013) and using NATA accepted analytical procedures.

6.1.3 Sample Transport and Storage temperature

In accordance with Schedule B3 of the ASC NEPM (2013), all samples were chilled during transport to the laboratory and evidence of chilling was recorded on the sample receipt documentation for the laboratory.

6.2 Field Intra-Laboratory Duplicate Assessment

Relative Percentage Differences (RPDs) were calculated between the primary sample concentration and its corresponding intra-laboratory duplicate. As stipulated by the NEPM, the RPD acceptance criteria is 30% however it is noted that higher variations can be expected for organic analysis, samples with low analyte concentrations or non-homogenous samples (NEPC, 2013). As such, the primary laboratory RPD acceptance criteria were used and are as follows:

- 1) Results <10 times the LOR: No Limit;
- 2) Results between 10-20 times the LOR: RPD must lie between 0-50%; and
- 3) Results >20 times the LOR: RPD must lie between 0-30%

The results of the Rinsate sample analysis were all found be to be below the laboratory Limit of Reporting for all analytes, indicating field decontamination procedures were adequate.

Results of the RPD analysis between primary and duplicate samples were all within allowable limits.

The analytical data is considered sufficiently complete, representative, comparable, accurate and precise to serve as an adequate basis for interpretation for the purposes of this project.

6.3 Laboratory Quality Assurance and Quality Control

Laboratory QA/QC procedures and results are detailed in the certified laboratory results contained in *Annex H*. The analytical methods implemented by the laboratories were reported to be consistent with the scope of their NATA accreditation and consistent with Schedule B3 of the ASC NEPM (2013). The laboratory generally reported an adequate range and frequency of data quality information (including laboratory duplicates and control samples).

The reported laboratory data quality was considered acceptable to meet the objectives of this assessment.

6.4 Data Quality Summary

Overall, the data from this investigation is considered to be of sufficient quality to serve as a basis for interpretation as part of this assessment.

7 Preliminary Conceptual Site Model

A CSM is a representation of site related information regarding contaminant sources, exposure pathways and receptors. A CSM facilitates consideration of risks to human health and the environment associated with site contamination through assessment of source – pathway – receptor linkages. A preliminary CSM based on the understanding of site history and environmental setting is presented in the following sections.

7.1 Potential Sources and Associated Contaminants of Concern

Analytical results from the intrusive investigation did not indicate any Contaminants of Potential Concern (CoPC).

Off-site sources of contamination with the potential to affect the site were considered unlikely taking into consideration information discussed in Section 2.2 of this report.

7.2 Potential Receptors and Pathways

The following receptors have been identified based on current site setting and proposed future development:

- 1) Construction workers associated with the proposed development;
- 2) Current and future site users (including secondary students and workers);
- 3) Future on-site intrusive maintenance workers; and
- 4) Terrestrial flora and fauna.

Pathways by which the contamination may affect the receptors presented above includes:

- 1) Direct contact (dermal contact, incidental ingestion and dust inhalation);
- 2) Ecological uptake.

7.3 SPR Linkage Assessment

A source-pathway-receptor (SPR) linkage is present when a pathway links a source with a receptor. These linkages are considered complete where a risk to the identified receptors may exist, now or in the future. Given that soil analytical results were reported below the adopted screening criteria (HIL/HSL A) for the identified receptors via the relevant pathway (direct contact), this SPR linkage is incomplete. Therefore, a potential exposure risk is considered unlikely.

8 Conclusions

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School (St Nicholas EEC) – 30 Vista Parade, Kotara NSW (herein referred to as the site). Analysis was conducted for contaminants of concern to identify any potential contamination issues that would constrain the site use for it's proposed expanding development.

The detailed desktop review of available information and thorough site inspection including shallow soil investigation have enabled the development of a preliminary conceptual site model allowing assessment of potential health and environmental issues relating to the site. Key findings were:

- 1) Potential contamination sources at the site are limited based on area land use;
- 2) Visible signs of gross contamination were not observed during site inspection and intrusive works;
- 3) Contamination in shallow soils was not identified at any of the sampling locations;
- 4) Contamination in deeper soils was not identified at any of the sampling locations.

In summary, based on the desktop study and limited intrusive sampling conducted on the Site, no indication of gross contamination has been identified which would constrain the expansive development of the Site under its current residential A land use criterion as a primary school and proposed use as an early education centre.

If you have any further questions about this report, please contact the undersigned.

For and on behalf of

Valley Civilab Pty Ltd

Jake Duck Environmental Scientist.

Malcolm Adrien Environmental Services Manager

References:

- Australian Standard AS 4482.1-2005 (2005) *Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1 – Non-volatile and Semi-Volatile Compounds.*
- National Environment Protection Council (NEPC), (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2: Guideline On-site Characterisation.
- NSW EPA (1997) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA (1997). Contaminated Land Management Act 1997.
- NSW EPA (2017) Naturally Occurring Asbestos in NSW <u>https://trade.maps.arcgis.com/apps/PublicInformation/index.html?appid=87434b6ec7dd4ab</u> <u>a8cb664d8e646fb06</u> accessed 23/01/20.

Lotsearch (2019) Enviro Professional, Reference: LS011100 EP 11 - Feb 2020 12:43:12

LIMITATIONS

This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. Valley Civilab performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. Valley Civilab makes no warranty concerning the suitability of the site for any purpose or the possibility of any use, development or re-development of the site. Except as otherwise stated, Valley Civilab's assessment is limited strictly to identifying specified environmental conditions associated with the subject site and does not evaluate structural conditions of any buildings on the subject site. Lack of identification in the report of any hazardous or toxic materials on the subject site should not be interpreted as a guarantee that such materials do not exist on the site.

This assessment is based on site inspection conducted by Valley Civilab personnel, sampling and analysis described in the report, and information provided by Catholic Diocese of Maitland-Newcastle or other people with knowledge of the site conditions. All conclusions and recommendations made in the report are the professional opinions of the Valley Civilab personnel involved with the project and, while normal checking of the accuracy of data has been conducted, Valley Civilab assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.

Valley Civilab is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.

VALLEY CIVILAB PREPARED THIS REPORT FOR THE SOLE AND EXCLUSIVE BENEFIT AND USE OF Catholic Diocese of Maitland-Newcastle. NOTWITHSTANDING DELIVERY OF THIS REPORT BY VALLEY CIVILAB OR Catholic Diocese of Maitland-Newcastle TO ANY THIRD PARTY, UNLESS OTHERWISE EXPRESSLY AGREED, ANY COPY OF THIS REPORT PROVIDED TO A THIRD PARTY IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, WITHOUT THE RIGHT TO RELY AND VALLEY CIVILAB DISCLAIMS ALL LIABILITY TO SUCH THIRD PARTY TO THE EXTENT PERMITTED BY LAW. ANY USE OF THIS REPORT BY A THIRD PARTY IS DEEMED TO CONSTITUTE ACCEPTANCE OF THIS LIMITATION.

Annex A

Notes: (1) The scale bar is approximate. (2) Base layer sourced from NearMap (2019).

Figure 1 - Borehole Plan

Scale (m) 40 20

Annex B

Newcastle

Planning Certificate

Section 10.7, Environmental Planning and Assessment Act 1979

To: Lotsearch Pty Ltd Level 3. 68 Alfred Street MILSONS POINT NSW 2061 Certificate No: PL2020/00661 \$133.00 Fees: Receipt No(s):

D001449713

Your Reference: LS011100

Date of Issue: 11/02/2020

The Land: Lot 12 DP 560852 30 Vista Parade Kotara NSW 2289

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1 - 21Additional advice under section 10.7(5): see Items 22 - 30

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone our Customer Contact Centre on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the City of Newcastle (CN) development policies for the general area, contact our Customer Contact Centre.

All information provided is correct as at 11/02/2020. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

City of Newcastle

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222

Customer Contact Centre Ground floor, 12 Stewart Avenue Newcastle West NSW 2300

Office hours: Mondays to Fridays 8.30 am to 5.00 pm

Part 1:

Advice provided under section 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 1 - Development Standards

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Urban Renewal) 2010

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

State Environmental Planning Policy (Concurrences) 2018

State Environmental Planning Policy (Primary Production and Rural Development) 2019

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone R2 Low Density Residential

Note: Refer to www.newcastle.nsw.gov.au or www.legislation.nsw.gov.au web site for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone R2 Low Density Residential

• Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To accommodate a diversity of housing forms that respects the amenity, heritage and character of surrounding development and the quality of the environment.

• Permitted without consent

Environmental protection works; Home occupations

• Permitted with consent

Boarding houses; Child care centres; Community facilities; Dwelling houses; Educational establishments; Emergency services facilities; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Home-based child care; Hospitals; Neighbourhood shops; Recreation areas; Residential accommodation; Respite day care centres; Roads; Tourist and visitor accommodation

• Prohibited

Backpackers' accommodation; Hostels; Rural workers' dwellings; Serviced apartments; Any other development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: There are no heritage items listed in the Newcastle Local Environmental Plan 2012 situated on the land.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on City of Newcastle (CN) web pages.

General Housing Code

Complying development under the General Housing Code MAY be carried out on this land.

Rural Housing Code

Complying development under the Rural Housing Code MAY be carried out on this land.

Housing Alterations Code

Complying development under the Housing Alterations Code MAY be carried out on this land.

General Development Code

Complying development under the General Development Code MAY be carried out on this land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code MAY be carried out on this land.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code MAY be carried out on this land.

Subdivision Code

Complying development under the Subdivision Code MAY be carried out on this land.

Demolition Code

Complying development under the Demolition Code MAY be carried out on this land.

Fire Safety Code

Complying development under the Fire Safety Code MAY be carried out on this land.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Mine Subsidence Compensation Act 1961

The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017. Development in a Mine Subsidence District requires approval from Subsidence Advisory NSW. Subsidence Advisory NSW provides compensation to property owners for mine subsidence damage. To be eligible for compensation, development must be constructed in accordance with Subsidence Advisory NSW approval. Subsidence Advisory NSW has set surface development guidelines for properties in Mine Subsidence Districts that specify building requirements to help prevent potential damage from coal mine subsidence.

NOTE: The above advice is provided to the extent that City of Newcastle (CN) has been notified by Subsidence Advisory NSW.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: Council has adopted a policy of restricting development or imposing conditions on properties affected by Land Contamination. Refer to the Newcastle Development Control Plan 2012, which may be inspected or purchased at our Customer Contact Centre.

Bush fire: Under clause 5.11 Bush fire hazard reduction of the Newcastle LEP 2012, bush fire hazard reduction work authorised by the Rural Fires Act 1997 may be carried out on any land without development consent. *NOTE: The Rural Fires Act 1997 also makes provision relating to the carrying out of development on bush fire prone land.*

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. City of Newcastle (CN) considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in CN either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Our information currently indicates that the property is, or contains, flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development of flood prone land. This includes development for the purpose of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings. The DCP may be viewed on our website, inspected or purchased at our Customer Contact Centre.

NOTE: More detailed flood information specific to the property is available on separate flooding certificate application through our Customer Contact Centre on (02) 4974 2000

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 7.12 Newcastle Local Infrastructure Contributions Plan 2019:

The Plan specifies section 7.12 contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on our website or may be inspected or purchased at our Customer Contact Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which CN is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which CN is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land, either in whole or in part IS bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

CN HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

(a) The land IS NOT AFFECTED by a current site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.

(b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which CN is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

CN HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which CN is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

Part 2:

Advice provided under section 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by City of Newcastle (CN).

Our records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: CN has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which we are unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Contact Centre on (02) 4974 2000.

23. Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Note: The Newcastle Local Environmental 2012 may have additional provisions that affect the carry out of development. Refer to the Newcastle Local Environmental 2012 for the full affect it may have on the land or obtain profession advice for more information.

24. Suspension of covenants.

Refer to 1.9A Suspension of covenants, agreements and instruments of the Newcastle Local Environmental Plan 2012.

25. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

26. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that CN has been notified by the Heritage Council of NSW. For up-to-date details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

27. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that CN has been notified by the National Trust of Australia (NSW). For upto-date details, contact the National Trust Ph 02 9258 0123.

28. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that CN has been notified by the Department of the Environment. For up-todate details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

29. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- declared World Heritage areas
- declared Ramsar wetlands
- listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

30. Other matters

The land is affected by the following:

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Local Planning Strategy

The Local Planning Strategy is the principal land use strategy for Newcastle. It was adopted by the Council on 28 July 2015. The Strategy is taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Lower Hunter Regional Strategy (2006 - 2031)

The Lower Hunter Regional Strategy has been prepared by the Department of Planning and Infrastructure. The contents of the strategy will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Issued without alterations or additions, 11/02/20 Authorised by

JEREMY BATH CHIEF EXECUTIVE OFFICER

Newcastle

Planning Certificate

Section 10.7, Environmental Planning and Assessment Act 1979

To: Lotsearch Pty Ltd Level 3. 68 Alfred Street MILSONS POINT NSW 2061 Certificate No: PL2020/00660 \$133.00 Fees: Receipt No(s):

D001449713

Your Reference: LS011100

Date of Issue: 11/02/2020

The Land: Lot 131 DP 262057 30 Vista Parade Kotara NSW 2289

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1 - 21Additional advice under section 10.7(5): see Items 22 - 30

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone our Customer Contact Centre on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the City of Newcastle (CN) development policies for the general area, contact our Customer Contact Centre.

All information provided is correct as at 11/02/2020. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

City of Newcastle

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222

Customer Contact Centre Ground floor, 12 Stewart Avenue Newcastle West NSW 2300

Office hours: Mondays to Fridays 8.30 am to 5.00 pm

Part 1:

Advice provided under section 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 1 - Development Standards

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Urban Renewal) 2010

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

State Environmental Planning Policy (Concurrences) 2018

State Environmental Planning Policy (Primary Production and Rural Development) 2019

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone R2 Low Density Residential

Note: Refer to www.newcastle.nsw.gov.au or www.legislation.nsw.gov.au web site for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone R2 Low Density Residential

• Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To accommodate a diversity of housing forms that respects the amenity, heritage and character of surrounding development and the quality of the environment.

• Permitted without consent

Environmental protection works; Home occupations

• Permitted with consent

Boarding houses; Child care centres; Community facilities; Dwelling houses; Educational establishments; Emergency services facilities; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Home-based child care; Hospitals; Neighbourhood shops; Recreation areas; Residential accommodation; Respite day care centres; Roads; Tourist and visitor accommodation

• Prohibited

Backpackers' accommodation; Hostels; Rural workers' dwellings; Serviced apartments; Any other development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: There are no heritage items listed in the Newcastle Local Environmental Plan 2012 situated on the land.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on City of Newcastle (CN) web pages.

General Housing Code

Complying development under the General Housing Code MAY be carried out on this land.

Rural Housing Code

Complying development under the Rural Housing Code MAY be carried out on this land.

Housing Alterations Code

Complying development under the Housing Alterations Code MAY be carried out on this land.

General Development Code

Complying development under the General Development Code MAY be carried out on this land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code MAY be carried out on this land.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code MAY be carried out on this land.

Subdivision Code

Complying development under the Subdivision Code MAY be carried out on this land.

Demolition Code

Complying development under the Demolition Code MAY be carried out on this land.

Fire Safety Code

Complying development under the Fire Safety Code MAY be carried out on this land.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Mine Subsidence Compensation Act 1961

The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017. Development in a Mine Subsidence District requires approval from Subsidence Advisory NSW. Subsidence Advisory NSW provides compensation to property owners for mine subsidence damage. To be eligible for compensation, development must be constructed in accordance with Subsidence Advisory NSW approval. Subsidence Advisory NSW has set surface development guidelines for properties in Mine Subsidence Districts that specify building requirements to help prevent potential damage from coal mine subsidence.

NOTE: The above advice is provided to the extent that City of Newcastle (CN) has been notified by Subsidence Advisory NSW.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: Council has adopted a policy of restricting development or imposing conditions on properties affected by Land Contamination. Refer to the Newcastle Development Control Plan 2012, which may be inspected or purchased at our Customer Contact Centre.

Bush fire: Under clause 5.11 Bush fire hazard reduction of the Newcastle LEP 2012, bush fire hazard reduction work authorised by the Rural Fires Act 1997 may be carried out on any land without development consent. *NOTE: The Rural Fires Act 1997 also makes provision relating to the carrying out of development on bush fire prone land.*

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. City of Newcastle (CN) considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in CN either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Our information currently indicates that the property is, or contains, flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development of flood prone land. This includes development for the purpose of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings. The DCP may be viewed on our website, inspected or purchased at our Customer Contact Centre.

NOTE: More detailed flood information specific to the property is available on separate flooding certificate application through our Customer Contact Centre on (02) 4974 2000

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 7.12 Newcastle Local Infrastructure Contributions Plan 2019:

The Plan specifies section 7.12 contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on our website or may be inspected or purchased at our Customer Contact Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which CN is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which CN is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land, either in whole or in part IS bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

CN HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

(a) The land IS NOT AFFECTED by a current site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.

(b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which CN is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

CN HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which CN is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

Part 2:

Advice provided under section 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by City of Newcastle (CN).

Our records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: CN has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which we are unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Contact Centre on (02) 4974 2000.

23. Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Note: The Newcastle Local Environmental 2012 may have additional provisions that affect the carry out of development. Refer to the Newcastle Local Environmental 2012 for the full affect it may have on the land or obtain profession advice for more information.

24. Suspension of covenants.

Refer to 1.9A Suspension of covenants, agreements and instruments of the Newcastle Local Environmental Plan 2012.

25. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

26. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that CN has been notified by the Heritage Council of NSW. For up-to-date details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

27. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that CN has been notified by the National Trust of Australia (NSW). For upto-date details, contact the National Trust Ph 02 9258 0123.

28. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that CN has been notified by the Department of the Environment. For up-todate details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

29. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- declared World Heritage areas
- declared Ramsar wetlands
- listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

30. Other matters

The land is affected by the following:

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Local Planning Strategy

The Local Planning Strategy is the principal land use strategy for Newcastle. It was adopted by the Council on 28 July 2015. The Strategy is taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Lower Hunter Regional Strategy (2006 - 2031)

The Lower Hunter Regional Strategy has been prepared by the Department of Planning and Infrastructure. The contents of the strategy will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Issued without alterations or additions, 11/02/20 Authorised by

JEREMY BATH CHIEF EXECUTIVE OFFICER

Annex C

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

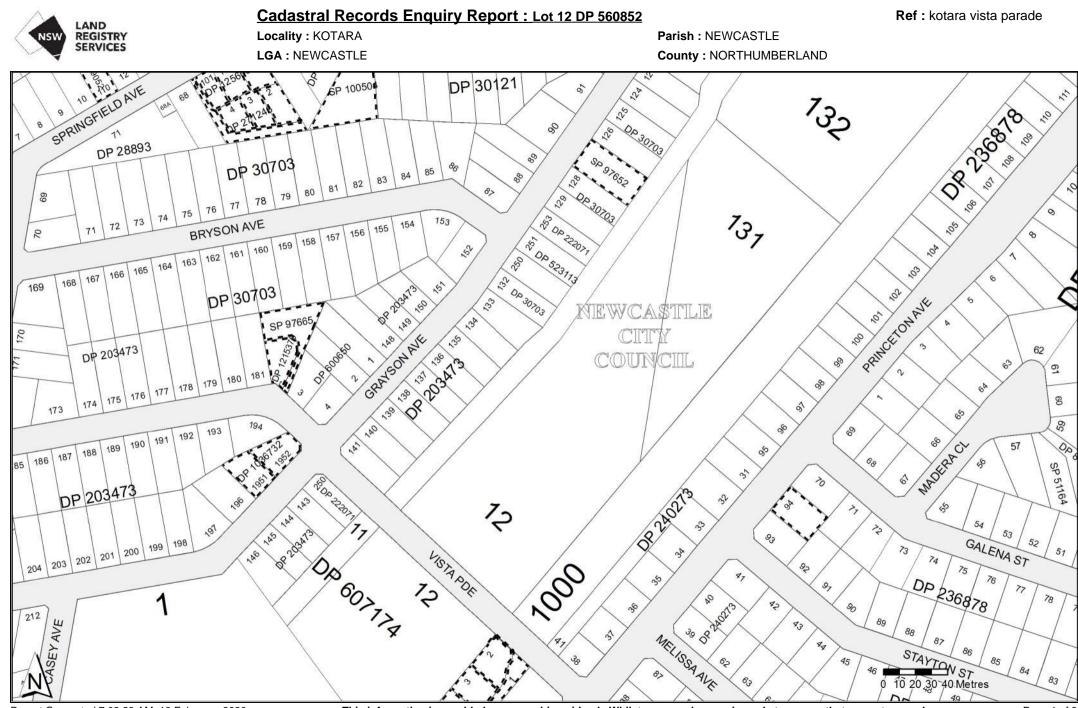
Address: - 30 Vista Parade, Kotara

Description: - Lot 12 D.P. 560852

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
14.08.1929 (1929 to 1956)	The Scottish Australian Mining Company Limited	Vol 4312 Fol 88 Now Vol 6102 Fol 167
09.07.1956 (1956 to 1964)	Hunter District Industries Pty Limited	Vol 6102 Fol 167 Now Vol 9881 Fol 9
14.10.1964 (1964 to 1967)	Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 9881 Fol 9 Now Vol 10684 Fol 82
23.11.1967 (1967 to 1970)	William Henry Hudson (Master Builder)	Vol 10684 Fol 82
02.03.1970 (1970 to 1973)	W.H. Hudson Developments Pty Limited	Vol 10684 Fol 82 Now Vol 12313 Fol 173
20.11.1973 (1973 to date)	# Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 12313 Fol 173 Now 12/560852

Denotes current registered proprietor

Leases: - NIL

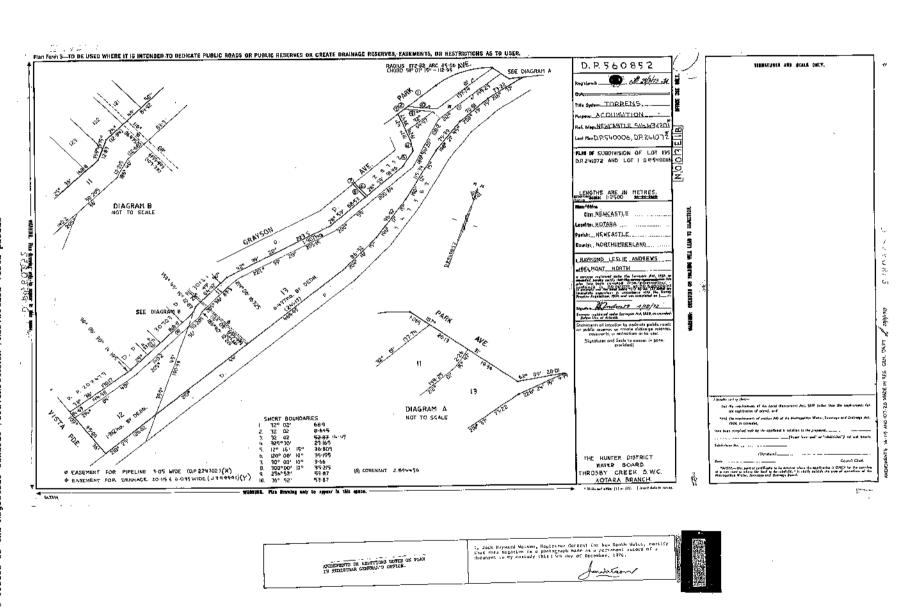

Easements: -

• 11.11.1982 (S 846861 & D.P. 616629) Easement for Stormwater Channel and Sewermain

*Rights to Mine

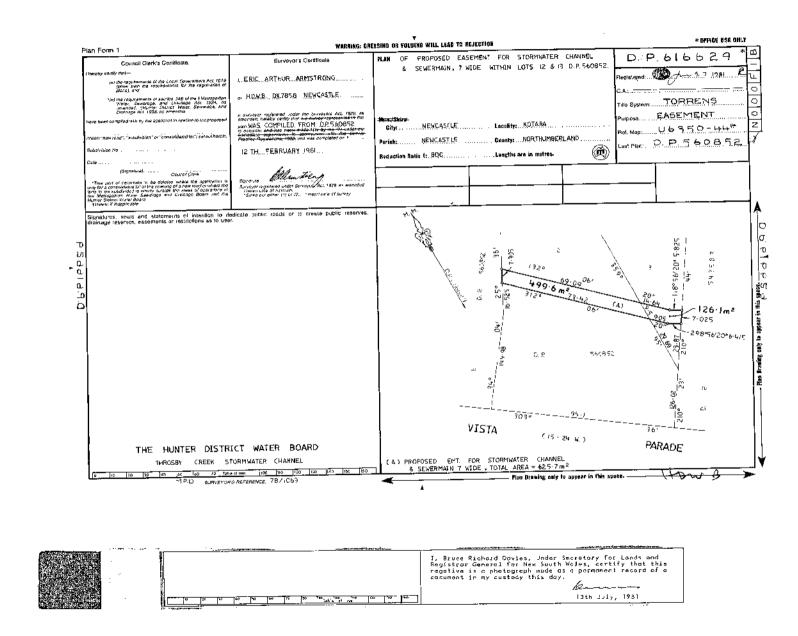
• 14.10.1964 (J 834456) Subject to Rights to mine

Yours Sincerely Mark Groll 13 February 2020

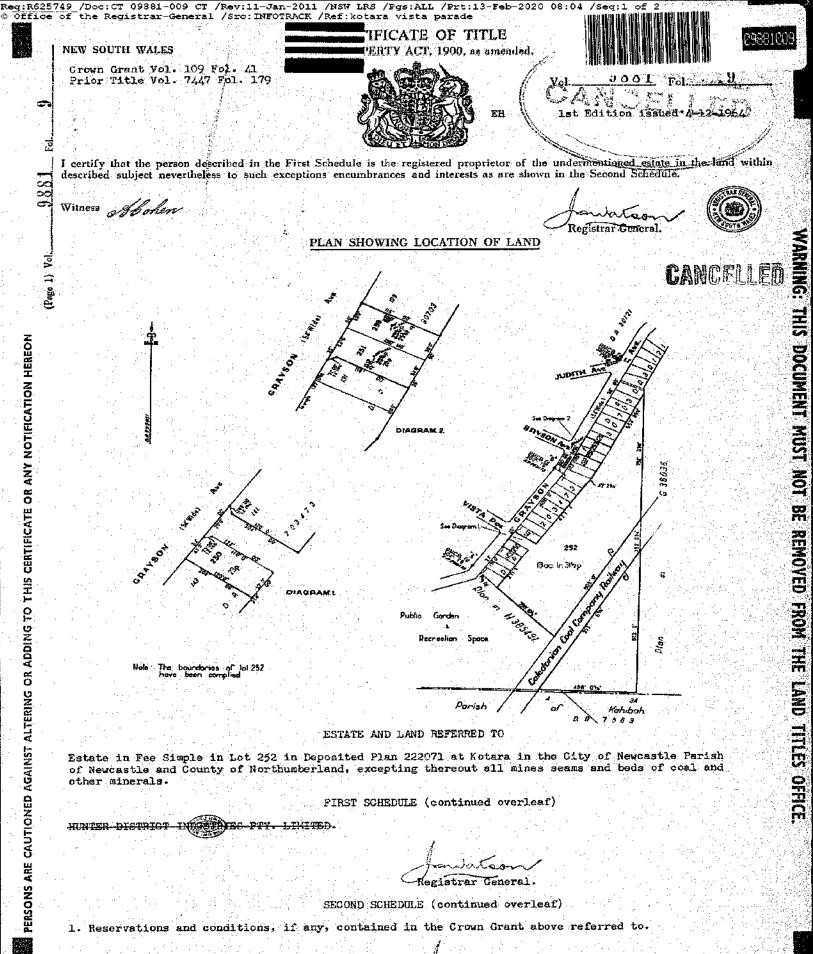


Report Generated 7:08:23 AM, 13 February, 2020 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 3



ч ÷ /Seg:1 /Pgs:ALL /Prt:13-Feb-2020 07:08 tara vista parade :04-Sep-1992 /NSW LRS /Pgs: /Src:INFOTRACK /Ref:kotara /Doc:DP 0560852 P /Rev:04-Sep-1992 the Registrar-General /Sro:INFOTRAC Reg:R625621 / © Office of 1



ч

å /Seg:1 07:09 /Prt:13-Feb-2020 ÷ /Pgs:ALL /Ref:kota LRS/Src:INFOTRACK /Ref /Rev:26-Nov-1992 al д /Doc:DP 0616629 the Registrar-Ge Reg:R625622 © Office of

Registrar General

HI JINGA	¥, C	Ν,	PERMIT.	GOVERNMENT	PaintLR	
----------	------	----	---------	------------	---------	--

N

Y.

	FIRST SCHEDULE (con	tinued)					1.
REGISTERED F	ROPRIETOR	NATURE	INSTRUMENT NATURE I NUMBER I			Signature of Registrar General	120
A h id a that id is a t	1 · 1 m	te te	TODENT	14-10.1964	15.1.1965	Jondation	10000000000000000000000000000000000000
Anustres of the Roman Catherine there for the	tweeve of Maulianes	- Arcuster	1854436	14 / O / 17Ey	<u>, 13 / 1 / 2863,</u>	0	of ont Is
The shot is concelled or to after the the				· ·····	.,	i, in the second se	D / 23
Now, Rectireday of the news Britten of -							12
for loss in a Eleci En Plan No. 734 5-77 as follow	14				· ·····		[P]
Louis / Far Vol. 10/17 Fol P / 22/ responsive					u =1 -1 1 1 1 1 1 1		hog has
							np nz
Javanon	• · · · · · · · · · · · · · · · · · · ·					••••···	John Sola
ALGISTRAR GENERAL					a a an an an an an an	······	
							ł
			· · · · · · · · · · · · · · · · · · ·	 	1	·	-
	SECOND SCHEDULE (co	ontinued)					
	PARTICULARS	ENTÉRED	Signature of Registrar General	· _ ·	CANCELLATION		
Covenant J83 4 4 56 Guinted by	Transfor Nº 553 0 456	15 1 1965	and she and				

INSTRUMENT			PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION		
NATURE	NUMBER			<u> </u>		······································		
monart	J834456		Exected by Frencher Nº 57520456	15 1 1965	- Jan hat word			
transfer	J834456	14-19: 1964	Enument (light 5 let down the surface and sub-surface)		- Allins	······································		
		a ana an Anara ar ar	Afterly the level and descended an start to per a 763-9.	ili				
	· · · · · · · · · · · · · · · · · · ·	1997 - 19	in the new noted shown on D.P. 23# 307	8.11.67	faultain			
					an i sana na mana ang ang			
						· · · · · · · · · · · · · · · · · · ·		
	-			······································	-,			
kija prostila i kao distanti i m								
- 	en mer, og ønner hærer her av om e					n a na an an ann an ann an ann ann ann		
	n star Brann (Samuara)							
,				аналар (мака жаналарарара) на каза 		n an		
		in an proving the system is a second se	• • • • • • • • • • • • • • • • • • •					
FORM	_ <u> </u>	<u> </u>	ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF		1	· · · · · · · · · · · · · · · · · · ·		

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 234597 at Kotara, in the City of Newcastle, Parish of Newcastle and County of Northumberland. EXCEPTING THEREOUT all mines, seams and beds of coal and other minerals.

FIRST SCHEDULE (continued overleaf)

WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

TRUCTERS ROMAN -DICCESE OF MAITLAND.

<u>SECOND SCHEDULE</u> (continued overleaf)

- 1. Reservations and conditions, if any, contained in the Crown Grant above referred to.
- 2. Rights to mine all coal and other minerals affecting the land above described as set out in Transfer No. J834456.
- 3. Covenant created by Transfer No. J834456.

00 Registrar General.

PT.1 , 37 V.C.N. Bright, Government Printer

.

Req:R625743 /Doc:CT 10684-082 CT /Rev:13-Jan-2011 /NSW LRS /Pgs:ALL /Prt: © Office of the Registrar-General /Sro:INFOTRACK /Ref:kotara vista parade

2

õ

8 ŝ

Seq:

0 ю

		FIRST SCHEDULE (continued)					
		REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar-Genera
<i>to 11<u></u>tudo</i> This D	Deed is cancelled as to pa	Henry Leader Hught, Aster Guiller Alg. Lunited t and New Certificates of Title Vol. 1540 FOI 207-212	Janefr Furnsfer	16 877 266	23-11-1467		Registrar-Genera Jachtean Jachtean
This Dee	l on. 10-3-1971 for ed is cancelled as to part	and New Certificates of Title Val 1549 11 9/3-240	.4	lan 240273		25.3.1971	Jauntaans
isrued on This Deed i	n_ 10-3-1971 for is cancelled as to partian 28-7-1971 for Se	d New Certificate's of Ticle Vol 11634 Fol 1 45 46.		an 240374		25.3.1971	Jakam?
		<u>(6 706 735</u>	Depented Pe	an 2H1072	,,,,,,,,	3-8-1971	Sinution
	· · · · · · · · · · · · · · · · · · ·						
	INSTRUMENT	SECOND SCHEDULE (continued)		· · · · ·	<u> </u>		
NATURE	NUMBER DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION	
	M119045	The interest of the Council of the City of Newcastle in the new road shown on D.P. 240273. Interests created pursuant to Soction 38B Conveyancing Xet, 1919. By the registration of Deposited Plan 240273. The interest of the Council of the of the City of Newcastle in new roads and addition to existing road shows on OP241072 Interests created provided Plan 2401022. The residue of land - in this certificate of title comprises to ad Entered 3rd August 1971	22 · 12 · 1970 (22 · 12 · 1970 (Januar Carrol			
<u></u>							

.

S RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

Req:R625731 /Doc:CT 11634-046 CT /Rev:12-Jan-2011 /NSW LRS / © Office of the Registrar-General /Src:INFOTRACK /Ref:kotara LRS /Pgs:ALL /Prt:13-Feb-2020 08:0. vista parade TITLE OF. ATE NEW SOUTH WALES ERTY ACT. 1900, as amended. 46 11634Fol Vol. 109 Fol.41 Crown Grant Vol. Edition issued 28-7-1971 Prior Title Vol.10684 Fol.82 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. κø Witness Registrar General. WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE. PLAN SHOWING LOCATION OF LAND 1.34 (Page 1) Vol. PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON UDITH * AF 232071 ROIT ي آنو ۍ ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 135 in Deposited Plan 241072 at Adamstown in the City of Newcastle Parish of Newcastle and County of Northumberland. EXCEPTING THEREOUT all mines, seams and beds of coal and other minerals excepted by Transfer No.J834456.

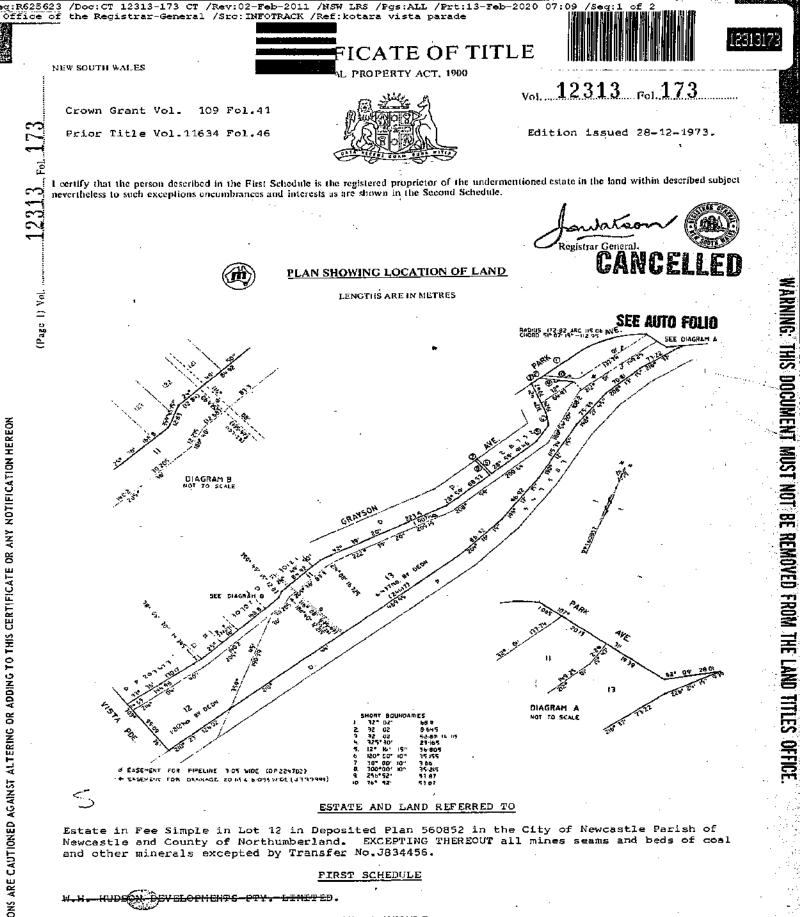
FIRST SCHEDULE

W.H. HUDSON DEVELOPMENTS PTY. LIMITED.

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to. 2. Rights to mine as set out in Transfer No. J834456.

3. Covenant created by Transfer No.J834456.


Registrar General

			FIRST SCHEDULE (continue	d)				NT, GOVENNENT PAINTER	
	• • • • • • • • • • • • • • • • • • • •		REGISTERED PROPRIETOR	<u>-,</u>	INSTRUMENT				0.000
				NATURE	NUMBER	DATE	ENTERED	Signature of Registran-General	DPSG
i his deed ls.	cancelled .as . is	بلي جلو و	de 20. 1. june						0720-
New Certifie	res of Title	baveisaueși	n 28 - 12-1973						
or loss in \mathbb{P}	poster Pla	n No. 5608	Siz as follows:	· ····		• • • • • • • • • • • • • • • • • • •			NALISZY
Lots 11 fo 1	3 Val 23	3 501 1210	?4-respectively.						kat II ir i N
	<i>u</i> .	Jatson		·				······	
· • · • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·	Neur	STHAR BEREH						· · · · · · · · · · · · · · · · · · ·	
								·	
····· · · · · · · · · ·			·				-		
······		•	·	······		·			
······								[
		· · · · · · · · · · · · · · · · · · ·							-
·	. INSTRUMENT		SECOND SCHEDULE (continu	red)		·	<u> </u>		
PATURE	NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION		
· · · · · · · · · · · ·		.						i i	
· · · · · · · · · · · · · · · ·			N					ļ	
· · · · · · · · · · · · · · · · · · ·	<u></u>						• · · · · · · · · · · · · · · ·		
				I				•	
					······································			· · · · · · · · · · · · · · · · · · ·	
·····	· · · · · · · · · · · · · · · · · · ·			·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·									
									en
									40. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
									an a
									en

te de complete

. . . .

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to 2. Rights to mine as set out in Transfer No.J834456.P XE 3. Covenant created by Transfer No.J834456. P ∠√

THE REGISTRAR GENERAL SFA NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED

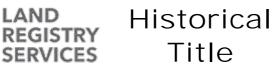
GRY

FIRST SCHEDULE (continued)					
REGISTERED PROPRIETOR		INSTRUMENT		ENTERED	Signature of Registrar General
	NATURE	NUMBER	DATE		
The Trustees for the Roman Catholic Church of The Diocese of Maitland	Transfer	NB44873	20-11-1973	24-5-1974	- htere
					ļ
					
CANCELLED		- i		•	
	ļ <u></u>				
			1		
	· · · · ·				
CEC ANTA PALLA			·		
SEE AUTO FOLIO				·	
	1				

					SECOND SCHEDULE (continued)					
	NATURE	NUMBER	DATE		PARTICULARS	ENTERED	Signature of Rogistrar General	C.	ANCELLATION	
A	S846861 Transf	er.Basement	or stormwat	er_channel_	_and severmain affecting the part of the land w	ithin				
					Registered_11_11_1982		Barrows			
			· 							······································
		ļ 			······		-			
			 	<u> </u>	•		•			
				<u>-</u>					· · · · · · · · · · · · · · · · · · ·	
				· ···				-		
			<u> </u>							
							· · · · · · · · · · · · · · · · · · ·		· ·	1
pages)										
		-								
of 2		•						- <u></u>		
^N		<u>+</u>	-							
(Poge			1	ļ			· ····	*	·	
-				- <u> </u>			-	-		
	•				· · · · · · · · · · · · · · · · · · ·					
			NOTE: ENTRIE	ES RULED T	HROUGH AND AUTHENTICATED BY THE SEAL OF TH	E REGISTRAR G	ENERAL ARE CA	NCELLED	•	·

in the second

.


N 5448737 0

Feb-20

/NSW LRS / /Ref:kotara

ã

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 13/2/2020 7:09AM

FOLIO: 12/560852

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 12313 FOL 173

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
3/8/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/10/1996		AMENDMENT: LOCAL GOVT AREA	
4/6/2014	AI631395	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

kotara vista parade

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 12/560852

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
13/2/2020	7:08 AM	-	-

VOL 12313 FOL 173 IS THE CURRENT CERTIFICATE OF TITLE

LAND ____

LOT 12 IN DEPOSITED PLAN 560852 LOCAL GOVERNMENT AREA NEWCASTLE PARISH OF NEWCASTLE COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP560852

FIRST SCHEDULE _____

THE TRUSTEES FOR THE ROMAN CATHOLIC CHURCH OF THE DIOCESE OF MAITLAND (T N844873)

SECOND SCHEDULE (4 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1
- J834456 LAND EXCLUDES MINERALS AND IS SUBJECT TO RIGHTS TO 2 MINE
- 3 J834456 COVENANT
- * 4 S846861 EASEMENT FOR STORMWATER CHANNEL AND SEWERMAIN AFFECTING THE PART OF THE LAND WITHIN DESCRIBED SHOWN SO BURDENED IN DP616629

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

kotara vista parade

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Annex D

Date: 11 Feb 2020 12:43:12 Reference: LS011100 EP Address: 30 Vista Parade, Kotara, NSW 2289

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	28/10/2019	28/10/2019	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	15/01/2020	14/01/2020	Monthly	1000	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	29/01/2020	29/01/2020	Monthly	1000	0	0	0
Former Gasworks	Environment Protection Authority	07/01/2020	11/10/2017	Monthly	1000	0	0	0
National Waste Management Facilities Database	Geoscience Australia	05/11/2019	07/03/2017	Quarterly	1000	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	05/02/2020	13/07/2012	Quarterly	1000	0	0	2
EPA PFAS Investigation Program	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	2000	0	0	0
Defence PFAS Investigation Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Defence PFAS Management Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	20/01/2020	12/12/2019	Monthly	2000	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	21/01/2020	21/01/2020	Monthly	2000	0	0	1
EPA Other Sites with Contamination Issues	Environment Protection Authority	04/02/2020	13/12/2018	Annually	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	1	3
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	3	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	3	3
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150	-	4	4
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500	0	0	0
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500	-	0	6
Points of Interest	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	1	2	39
Tanks (Areas)	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	1
Tanks (Points)	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	1
Major Easements	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	8
State Forest	NSW Department of Finance, Services & Innovation	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	21/01/2020	30/09/2019	·	1000	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	2	2	2
Botany Groundwater Management Zones	NSW Department of Planning, Industry and Environment	15/03/2018	01/10/2005		1000	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018		2000	0	0	23

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Geological Units 1:250,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	2	-	3
Geological Structures 1:250,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	0	-	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	ABARES	19/05/2017	17/02/2011	As required	1000	1	1	1
Soil Landscapes	NSW Office of Environment & Heritage	12/08/2014		None planned	1000	3	-	6
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	03/02/2020	06/12/2019	Weekly	500	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	1	1
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Office of Environment & Heritage	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	1	1	2
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	03/02/2020	07/12/2018	Weekly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	03/02/2020	24/01/2020	Weekly	1000	1	4	51
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	31/07/2018	Quarterly	1000	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	20/11/2019	Quarterly	1000	0	0	0
State Heritage Register - Curtilages	NSW Office of Environment & Heritage	08/11/2019	09/11/2018	Quarterly	1000	0	0	0
Environmental Planning Instrument Heritage	NSW Department of Planning, Industry and Environment	03/02/2020	17/01/2020	Weekly	1000	0	0	2
Bush Fire Prone Land	NSW Rural Fire Service	04/02/2020	14/12/2019	Quarterly	1000	2	3	4
Lower Hunter and Central Coast Regional Vegetation Survey	NSW Office of Environment & Heritage	28/02/2015	16/11/2009	As required	1000	2	2	6
Ramsar Wetlands of Australia	Commonwealth of Australia Department of the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	3	3	4
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	5	5	10
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	05/02/2020	05/02/2020	Weekly	10000	-	-	-

Site Diagram

30 Vista Parade, Kotara, NSW 2289

Contaminated Land

30 Vista Parade, Kotara, NSW 2289

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Contaminated Land

30 Vista Parade, Kotara, NSW 2289

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

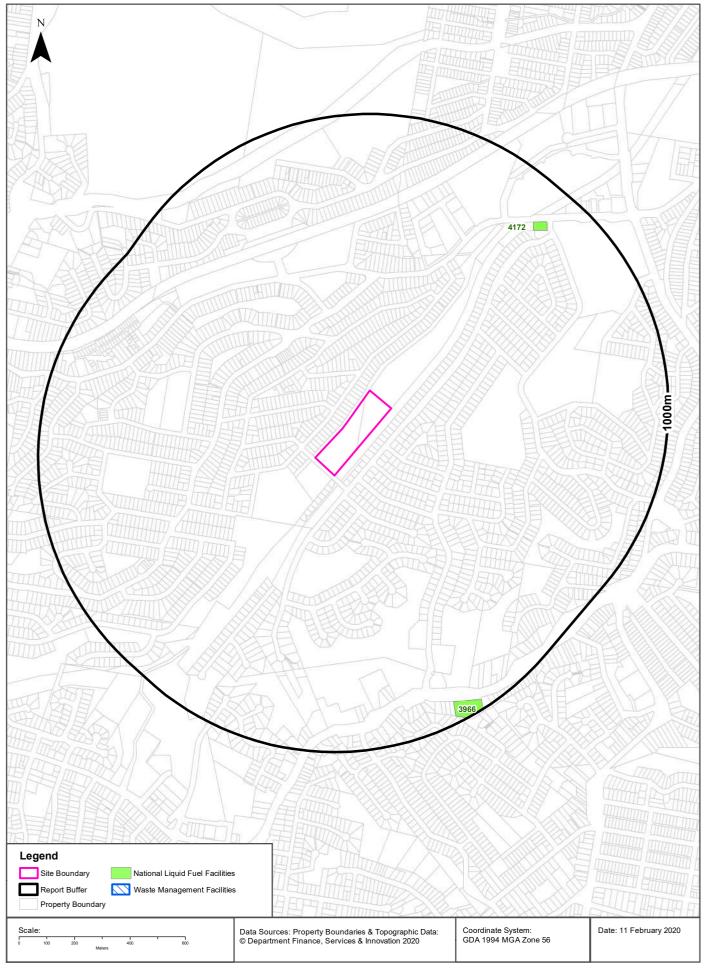
Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					


Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb C}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

30 Vista Parade, Kotara, NSW 2289

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
4172	Shell	Coles Express Kotara	93 Park Avenue	Kotara	Petrol Station	Operational		25/07/2011	Premise Match	823m	North East
3966	7-Eleven Pty Ltd	Mobil Charlestown	317 Pacific Highway	Highfields	Petrol Station	Operational		13/07/2012	Premise Match	922m	South East

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

30 Vista Parade, Kotara, NSW 2289

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

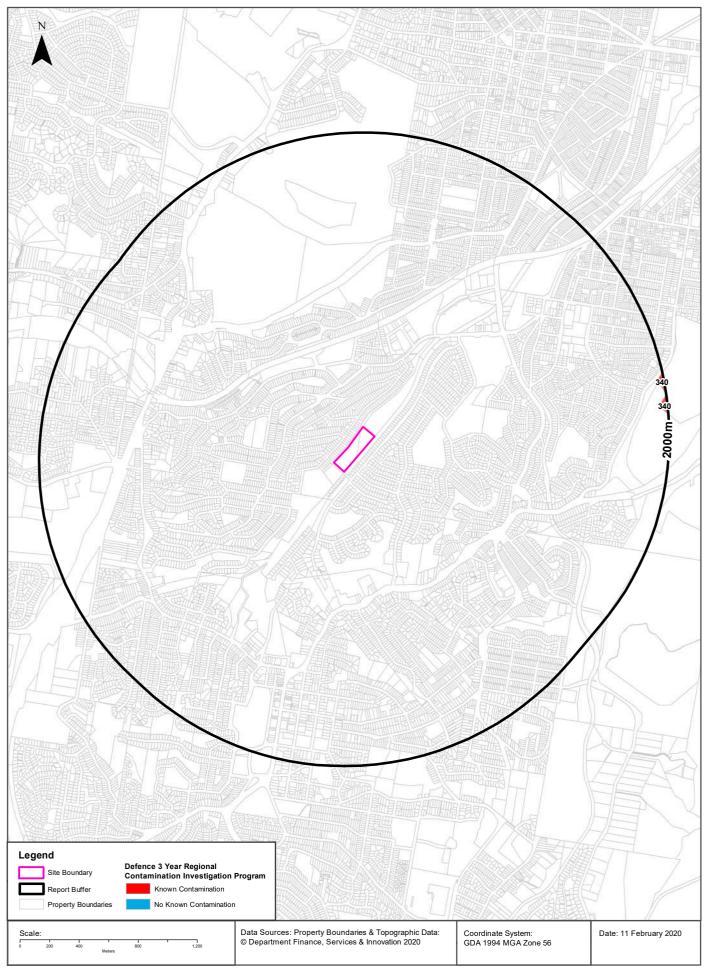
Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:


Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence 3 Year Regional Contamination Investigation Program

30 Vista Parade, Kotara, NSW 2289

Defence Sites

30 Vista Parade, Kotara, NSW 2289

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
340	Adamstown MUD	Adamstown, New South Wales	YES	Premise Match	1942m	East

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

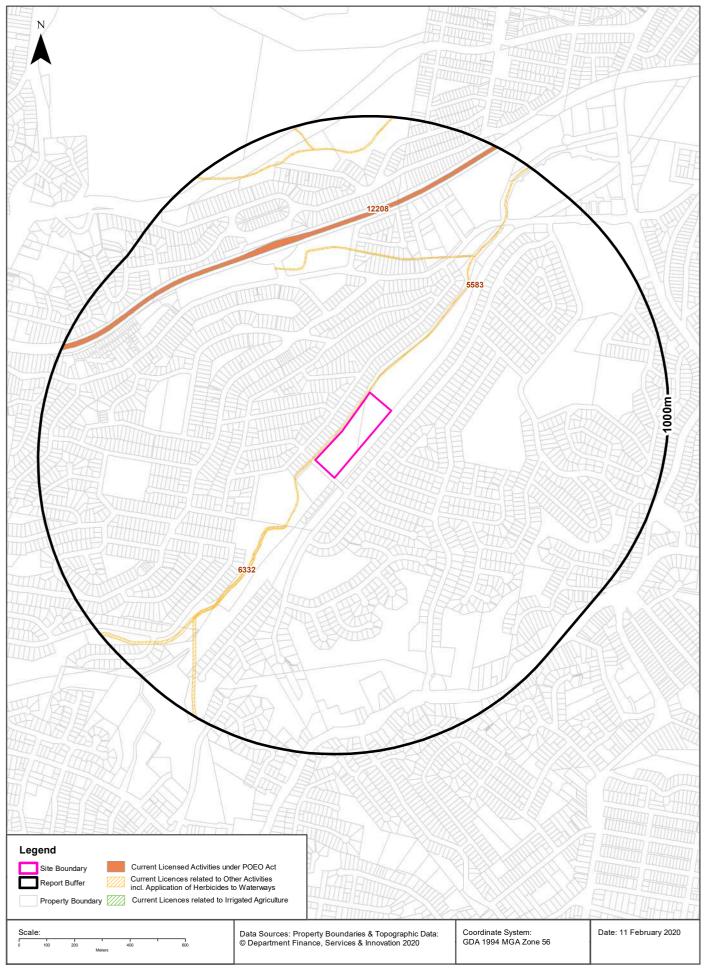
30 Vista Parade, Kotara, NSW 2289

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:


Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

30 Vista Parade, Kotara, NSW 2289

EPA Activities

30 Vista Parade, Kotara, NSW 2289

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
5583	NEWCASTLE CITY COUNCIL	WATERWAYS OF NEWCASTLE CITY	-	NEWCASTLE	Other activities	Network of Features	3m	West
6332	LAKE MACQUARIE CITY COUNCIL	-	-	SPEERS POINT	Other activities	Network of Features	246m	South West
12208	SYDNEY TRAINS		PO BOX K349, HAYMARKET, NSW 1238		Railway systems activities	Network of Features	605m	North West

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

30 Vista Parade, Kotara, NSW 2289

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

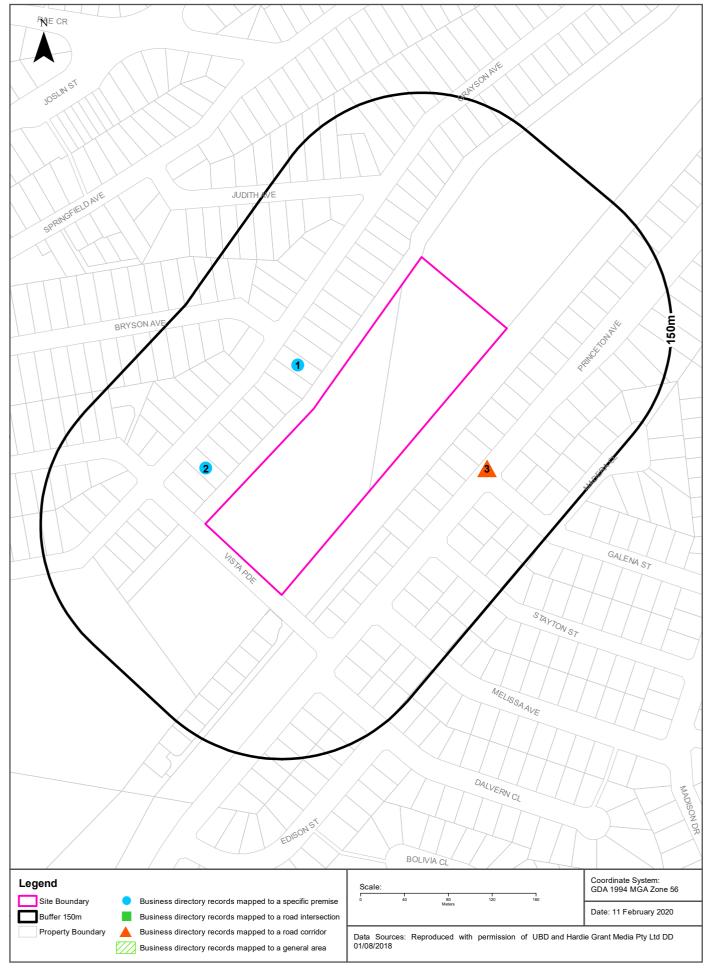
Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

 $\ensuremath{\mathbb C}$ State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	Onsite
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite

Former Licensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

30 Vista Parade, Kotara, NSW 2289

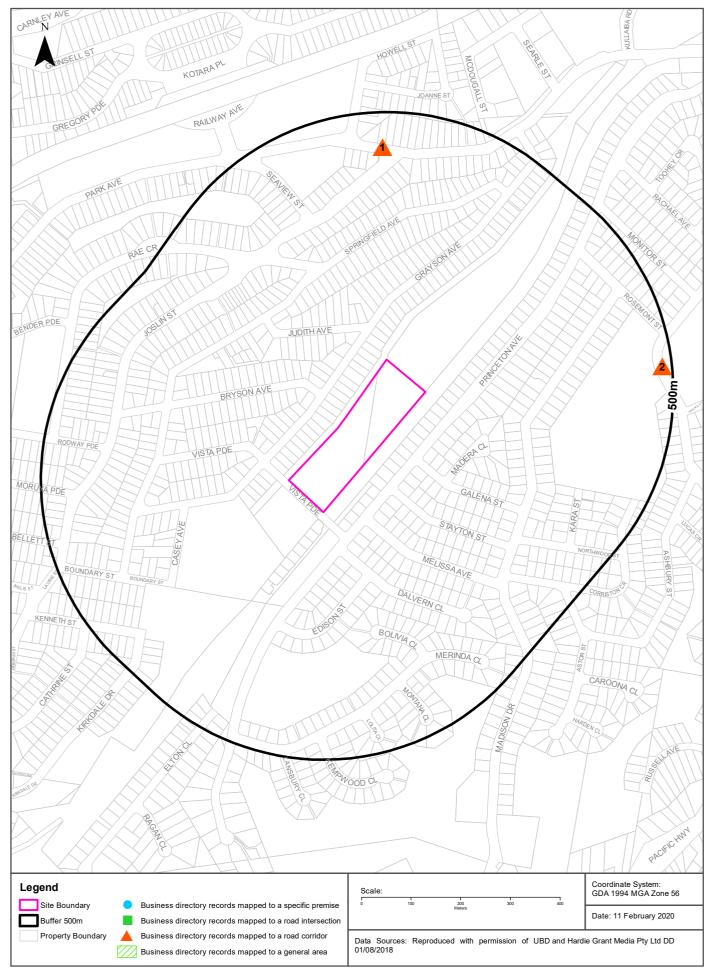
Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	BUILDERS &/OR BUILDING CONTRACTORS (M.M.B.A.)	Beveridge, K., 91 Grayson Ave., Kotara South, Newcastle	625327	1970	Premise Match	13m	North West
2	PAINTERS, PAPERHANGERS DECORATORS	Brown, T., 107 Grayson Ave., Kotara, Newcastle	632763	1970	Premise Match	14m	West
	SIGNWRITERS	Brown, T., 107 Grayson Ave., Kotara, Newcastle	634288	1970	Premise Match	14m	West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches


Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
3	SQUASH COURTS.	Belair Squash Centre., Princeton Av Kotara, Newcastle	92029	1991	Road Match	61m
	SQUASH COURTS.	Belair Squash Centre, Princeton Ave., Kotara. Newcastle	179537	1982	Road Match	61m
	INSURANCE BROKERS.	D.F.L. General Insurances, Belair Commercial Centre, Princeton Ave. Kotara Newcastle	175746	1982	Road Match	61m
	REAL ESTATE AGENTS &/OR VALUERS.	Tapp. R., Belair Commercial Centre, Princeton Ave., Kotara Newcastle	178745	1982	Road Match	61m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

30 Vista Parade, Kotara, NSW 2289

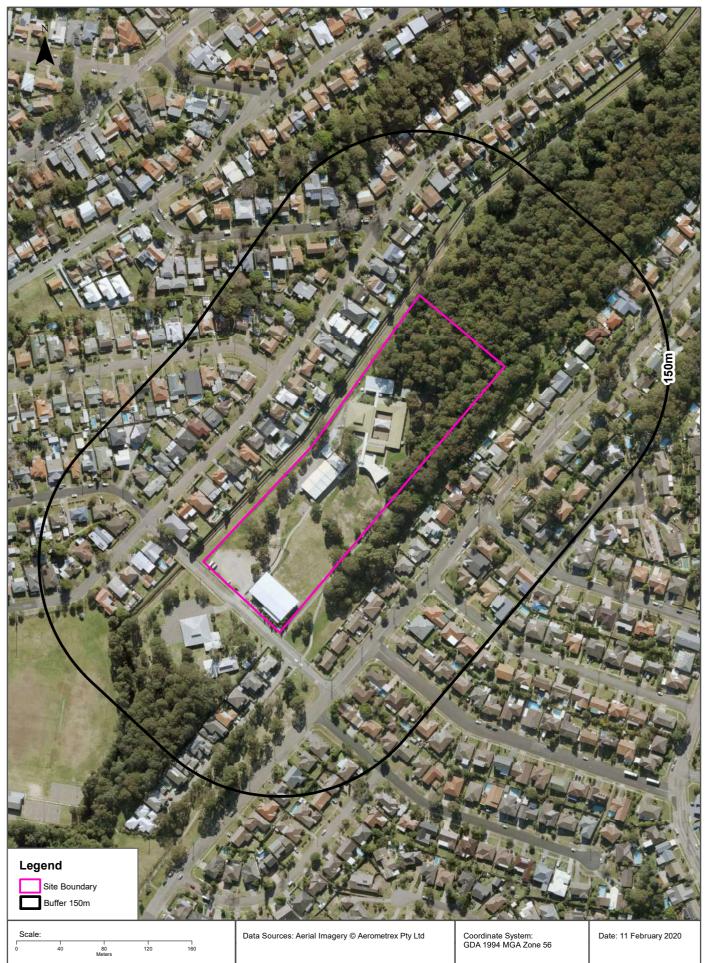
Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

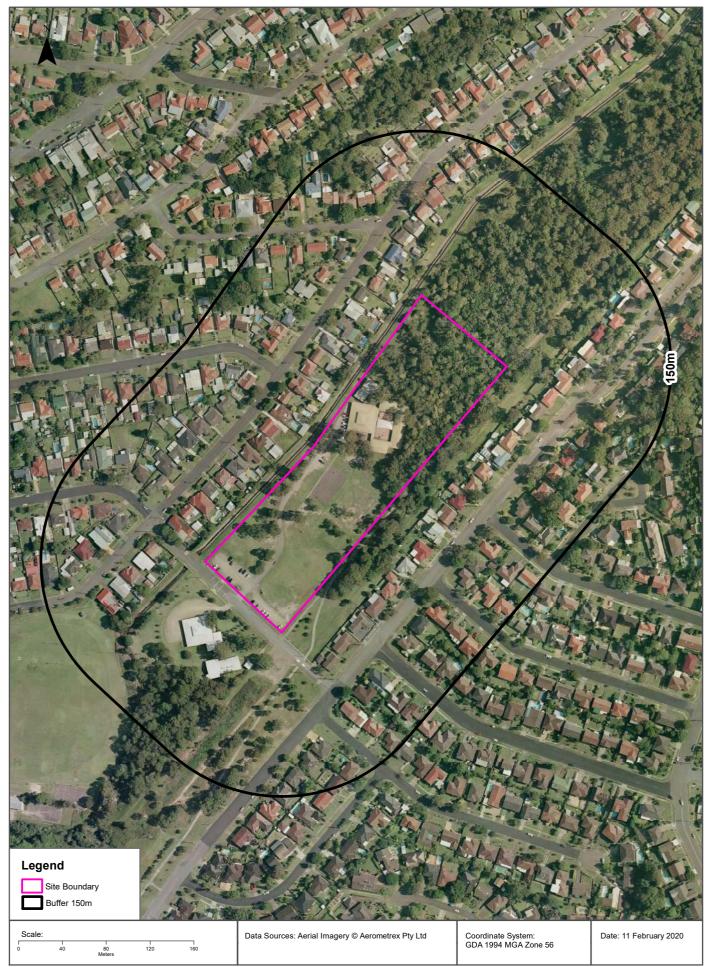

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

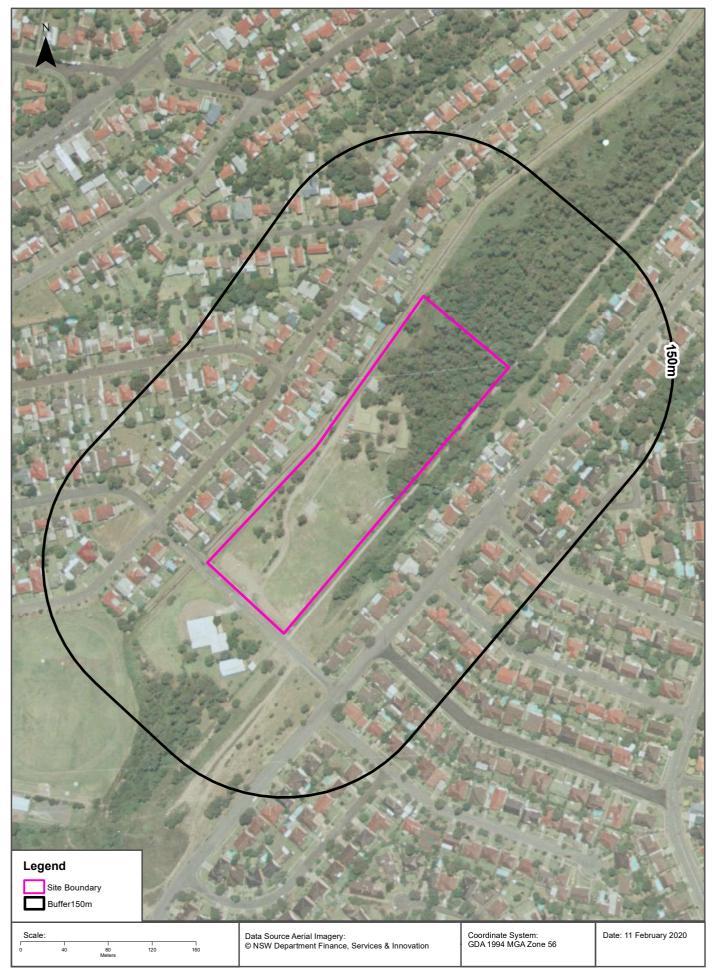
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Amoco Parkway Service Station Park Ave. Adamstown Newcastle	177093	1982	Road Match	408m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	B.P. Service Station, Park Ave., Adamstown, Newcastle	632163	1970	Road Match	408m
	MOTOR GARAGES &/OR ENGINEERS	Bel-Air Service Station, Park Ave., Kotara South, Newcastle	631850	1970	Road Match	408m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Kotara, Park Ave., Kotara, Newcastle	632166	1970	Road Match	408m
	MOTOR GARAGES &/OR ENGINEERS	Parkway Service Station, Park Ave., Adamstown, Newcastle	631933	1970	Road Match	408m
2	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Esso Service Centre, Lexington Pde., Kotara, Newcastle	632209	1970	Road Match	462m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

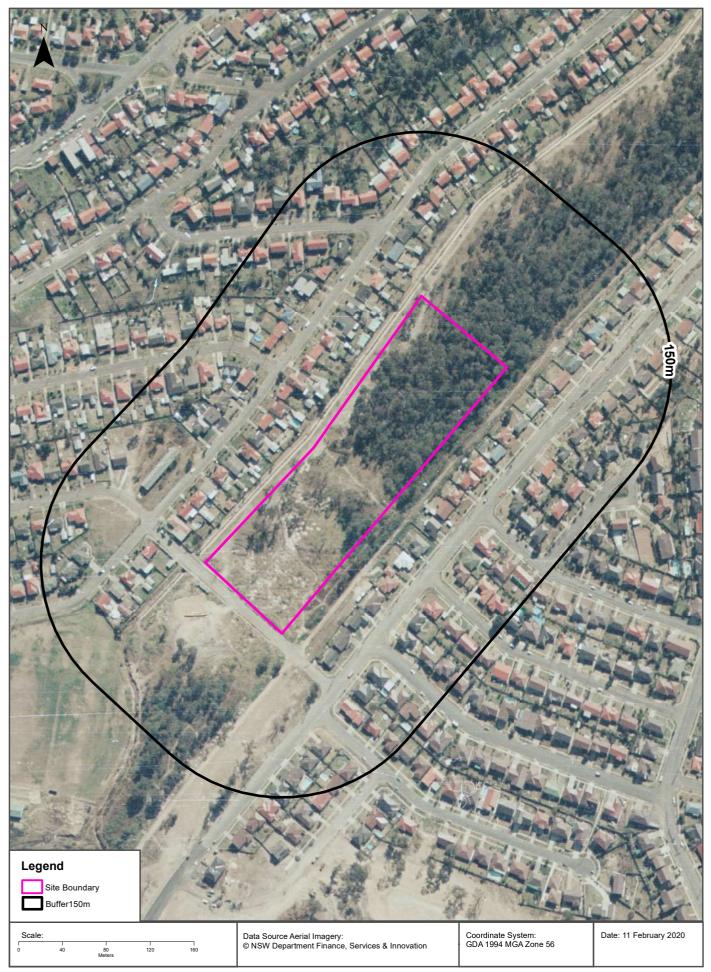
Aerial Imagery 2019 30 Vista Parade, Kotara, NSW 2289

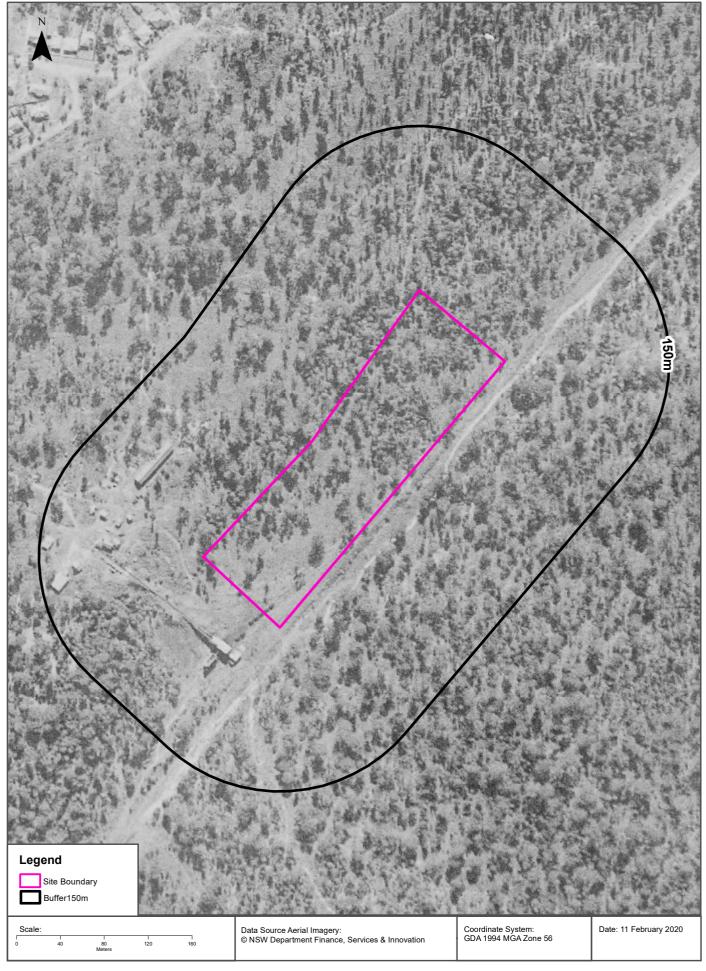
Aerial Imagery 2018 30 Vista Parade, Kotara, NSW 2289

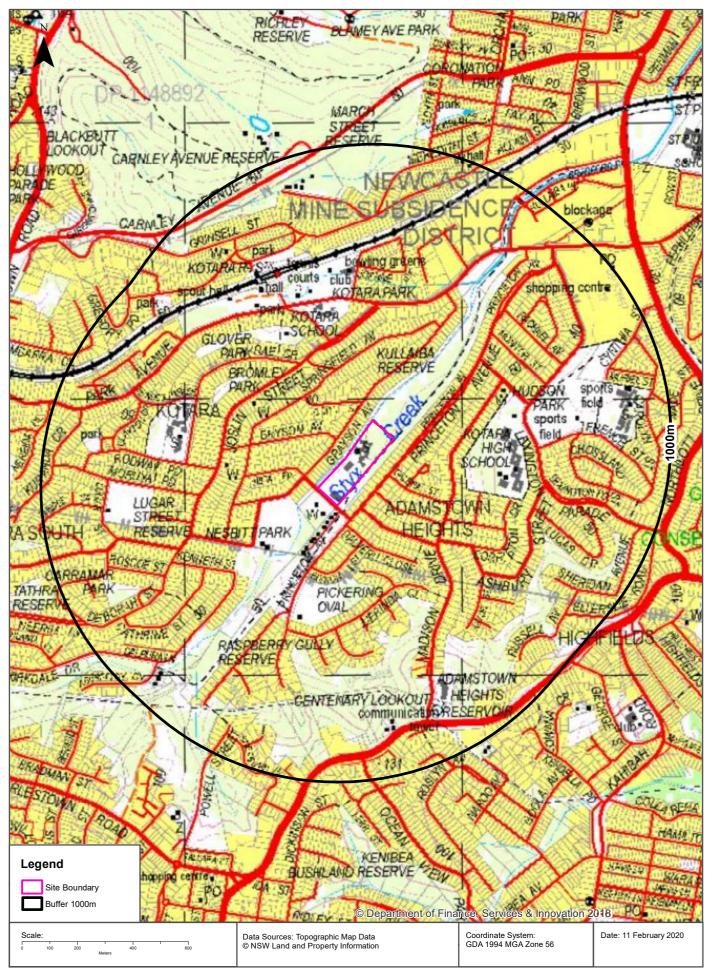


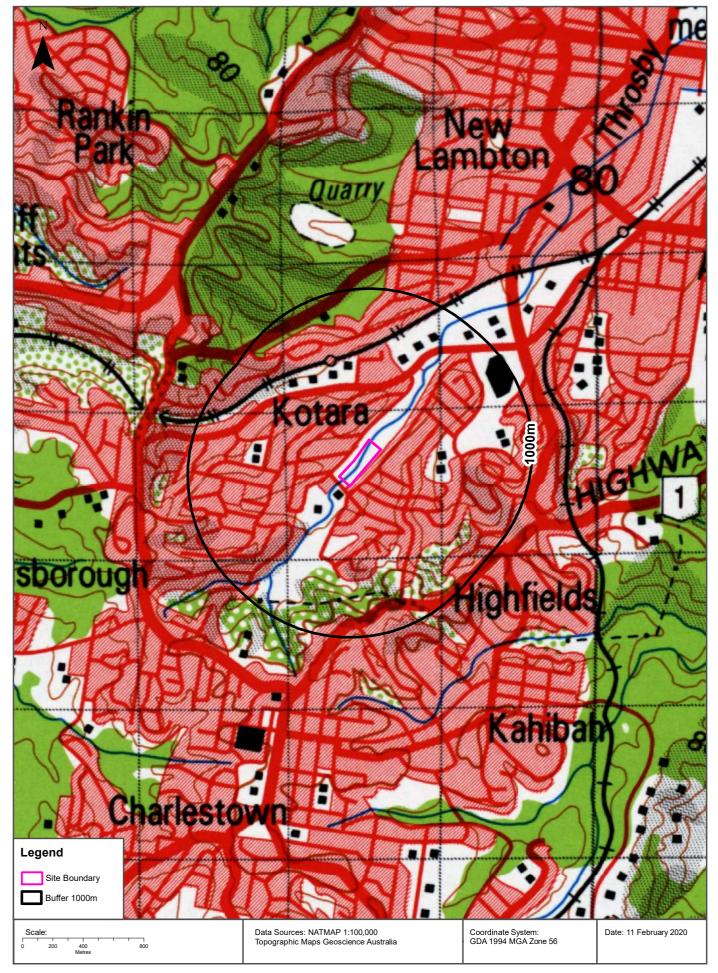


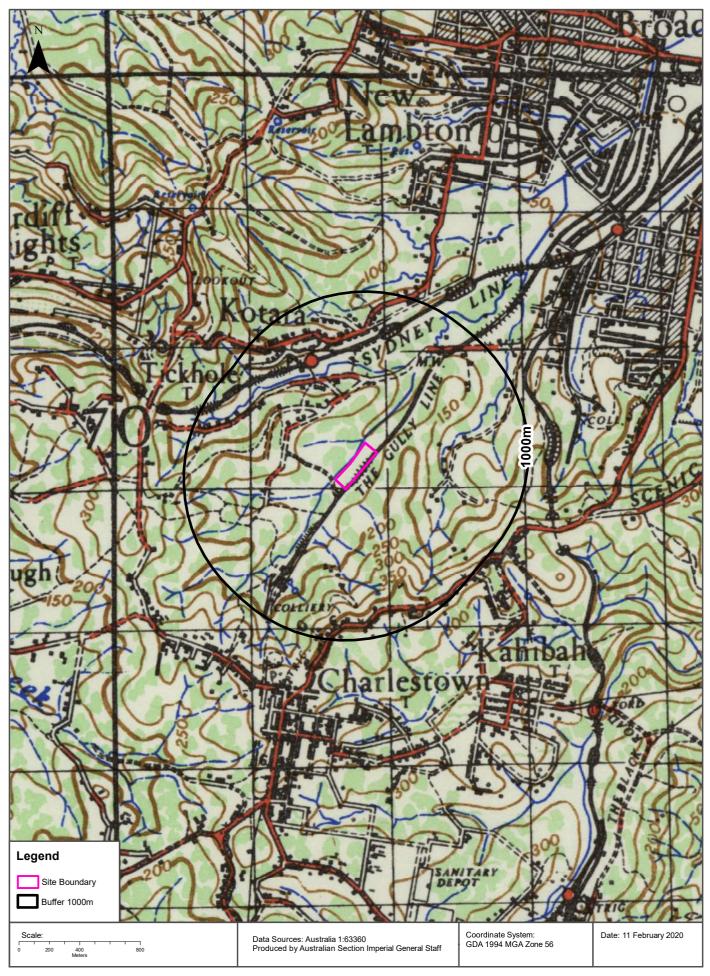
Aerial Imagery 2007 30 Vista Parade, Kotara, NSW 2289

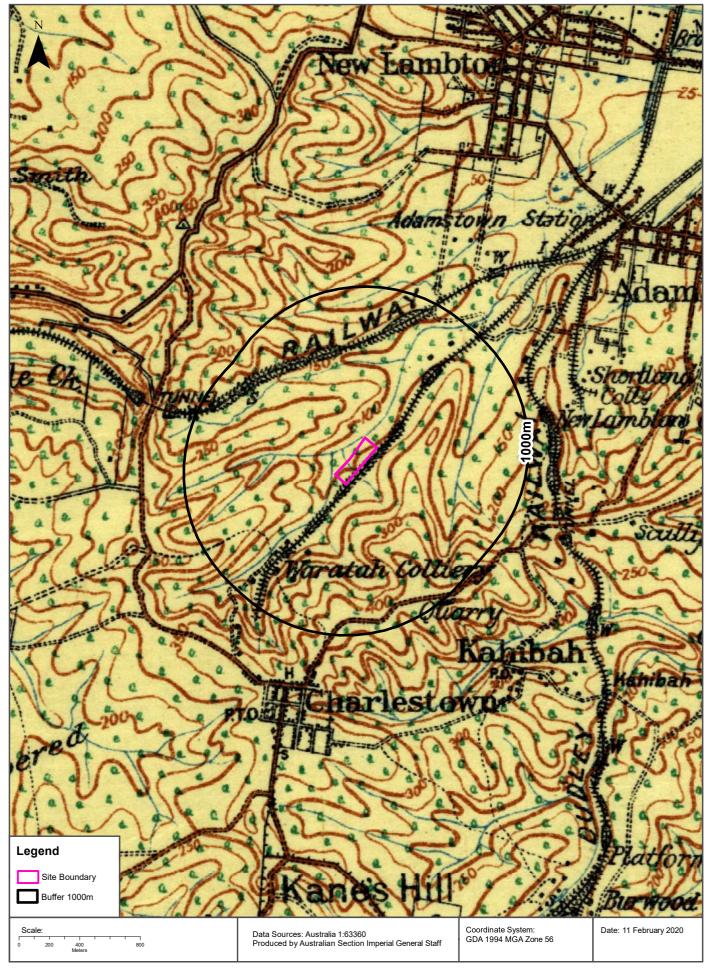


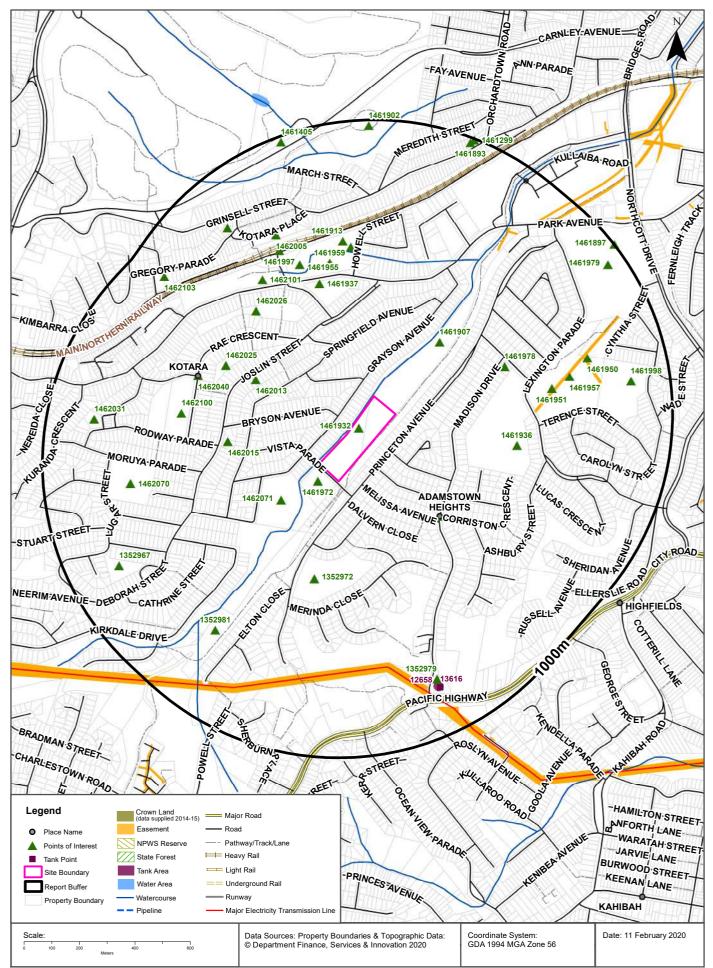





Topographic Map 2015


Historical Map 1981


Historical Map c.1941


Historical Map c.1913

Topographic Features

Topographic Features

30 Vista Parade, Kotara, NSW 2289

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1461932	Primary School	ST JAMES PRIMARY SCHOOL	Om	Onsite
1461972	Place Of Worship	CATHOLIC CHURCH	51m	South West
1462071	Sports Field	NESBITT PARK	191m	South West
1461907	Park	KULLAIBA RESERVE	301m	North East
1462015	Place Of Worship	ANGLICAN CHURCH	340m	West
1461917	Suburb	ADAMSTOWN HEIGHTS	360m	South East
352972	Sports Field	PICKERING OVAL	363m	South
462013	Place Of Worship	UNITING CHURCH	375m	North West
461978	Place Of Worship	BAPTIST CHURCH	429m	North East
1461936	High School	KOTARA HIGH SCHOOL	452m	East
1461937	Special School	KOTARA SCHOOL	452m	North
462025	Park	BROMLEY PARK	489m	North West
461959	Sports Field	KOTARA PARK	508m	North
462026	Park	GLOVER PARK	526m	North West
462100	Primary School	KOTARA SOUTH PUBLIC SCHOOL	530m	West
462040	Suburb	KOTARA	541m	West
461955	Sports Court	TENNIS COURTS	546m	North
461880	Club	KOTARA BOWLING AND RECREATION CLUB	546m	North
461951	Sports Field	Sports Field	571m	East
461913	Sports Field	BOWLING GREENS	572m	North
1462101	Park	Park	583m	North West
461997	Railway Station	KOTARA RAILWAY STATION	628m	North West
461957	Park	HUDSON PARK	641m	East
462005	Park	Park	682m	North
462070	Sports Field	LUGAR STREET RESERVE	685m	West
352981	Park	RASPBERRY GULLY RESERVE	698m	South West
461950	Sports Field	Sports Field	720m	East
352979	Lookout	CENTENARY LOOKOUT	798m	South
462007	Place Of Worship	UNITING CHURCH	806m	North West
352967	Park	CARRAMAR PARK	812m	South West
462031	Park	Park	828m	West

Map Id	Feature Type	Label	Distance	Direction
1461998	Primary School	BELAIR PUBLIC SCHOOL	857m	East
1462103	Park	Park	868m	North West
1461979	Shopping Centre	WESTFIELD KOTARA	937m	North East
1461405	Parking Area	Parking Area	979m	North
1461902	Park	MARCH STREET RESERVE	979m	North
1461893	Place Of Worship	UNITING CHURCH	981m	North
1461299	Community Facility	NEW LAMBTON UNITING CHURCH HALL	995m	North
1461897	Post Office	KOTARA POST OFFICE	999m	North East

Topographic Data Source: © Land and Property Information (2015) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

30 Vista Parade, Kotara, NSW 2289

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
1265	8 Water	Operational	ADAMSTOWN HEIGHTS RESERVOIR	14/07/2018	806m	South

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
13616	Water	Feature on Previous LPI Tank Area Supply		04/12/2012	830m	South

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120112903	Primary	Undefined		502m	East
120119219	Primary	Undefined		675m	South West
120119966	Primary	Undefined		691m	North East
120119969	Primary	Undefined		765m	North East
120108952	Primary	Undefined		765m	North East
120116325	Primary	Undefined		866m	North East
120109153	Primary	Undefined		909m	South
120111705	Primary	Undefined		909m	North East

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

30 Vista Parade, Kotara, NSW 2289

State Forest

What State Forest exist within the dataset buffer?

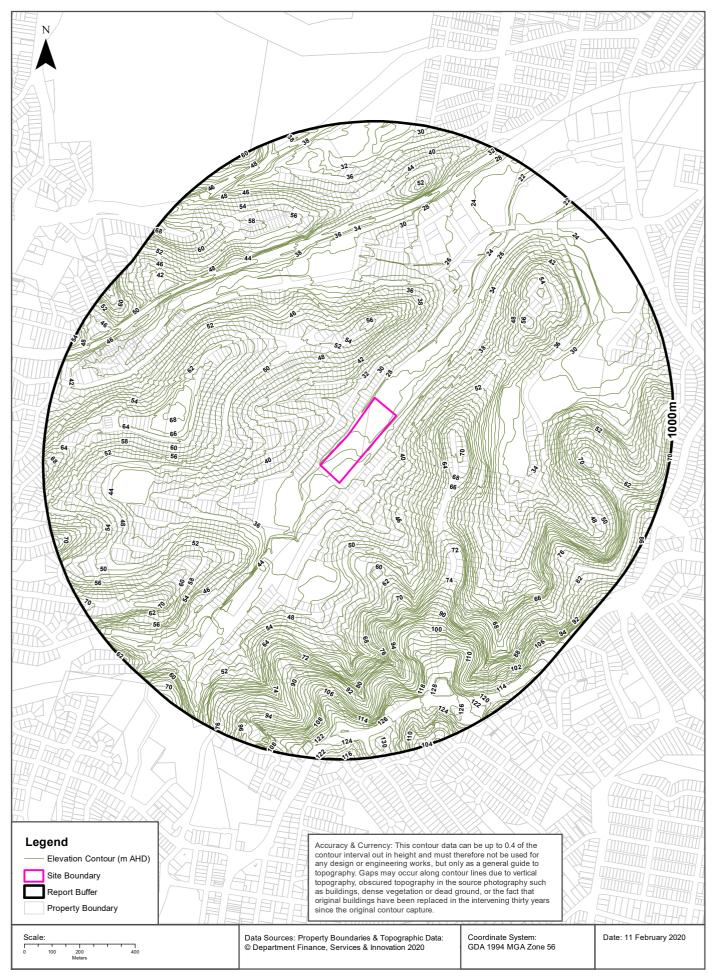
State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Hydrogeology

Description of aquifers on-site:

Description	
Fractured or fissured, extensive aquifers of low to moderate productivity	
Porous, extensive aquifers of low to moderate productivity	
Description of aquifers within the dataset buffer:	

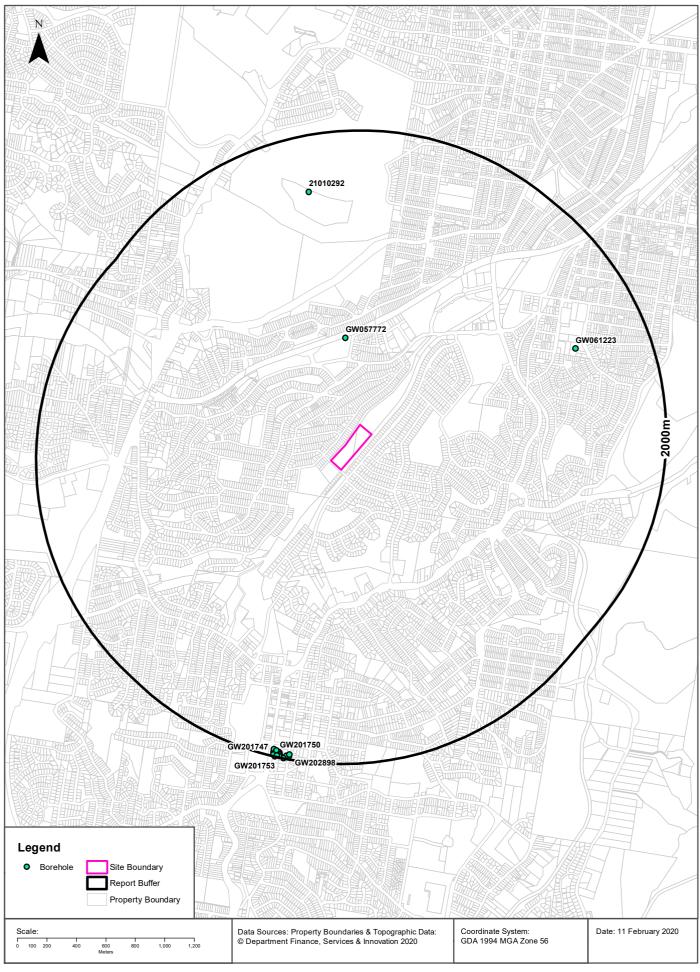
Description

Fractured or fissured, extensive aquifers of low to moderate productivity

Porous, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones


Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
N/A	No records in buffer		

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)	Elev (AHD)	Dist	Dir
GW057 772	20BL120 210	Bore	Private	Recreation (groundwater)	Recreation (groundwate r)		01/02/1981	24.00	24.00				597m	North
GW061 223	20BL133 110	Bore	Private	Domestic	Domestic		01/06/1985	36.50	36.50	3001- 7000 ppm			1501m	North East
210102 92					UNK							56.27	1618m	North
GW201 757	20BL173 012	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	6.40	6.40		4.90	104.5 7	1952m	South
GW201 758	20BL173 012	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	5.70	5.70		4.80	103.7 6	1958m	South
GW201 749	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	5.50	5.50		3.30	103.5 3	1963m	South
GW202 897	20BL173 546	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW11	14/07/2003	6.00	6.00		2.07	94.76	1966m	South
GW201 751	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	6.00	6.00		3.30	102.1 5	1967m	South
GW201 748	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	5.90	5.90		4.70	103.4 8	1970m	South
GW201 750	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	5.40	5.40		3.50	102.1 6	1971m	South
GW201 747	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/2009	7.00	7.00		5.00	104.5 9	1971m	South
GW201 755	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	7.40	7.40		3.30	102.1 9	1977m	South
GW202 892	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW17	09/09/2003	6.00	6.00		0.96	92.78	1979m	South
GW202 894	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW21	27/08/2007	5.00	5.00				1979m	South
GW202 888	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW9	22/07/2003	6.00	6.00		1.59	94.96	1980m	South
GW202 898	20BL173 547	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW12	14/07/2003	5.40	5.40		1.27	93.13	1983m	South
GW202 895	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW22	27/08/2007	4.50	4.50				1986m	South
GW201 752	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	6.50	6.50		4.80	104.3 5	1990m	South
GW202 890	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW15	09/09/2003	6.00	6.00		1.69	95.11	1991m	South
GW201 756	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	7.30	7.30		3.20	102.2 3	1991m	South
GW201 754	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	6.80	6.80		3.30	102.5 1	1991m	South
GW202 891	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW16	09/09/2003	6.00	6.00		1.56	93.96	1999m	South
GW201 753	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	7.40	7.40		4.50	103.3 4	1999m	South

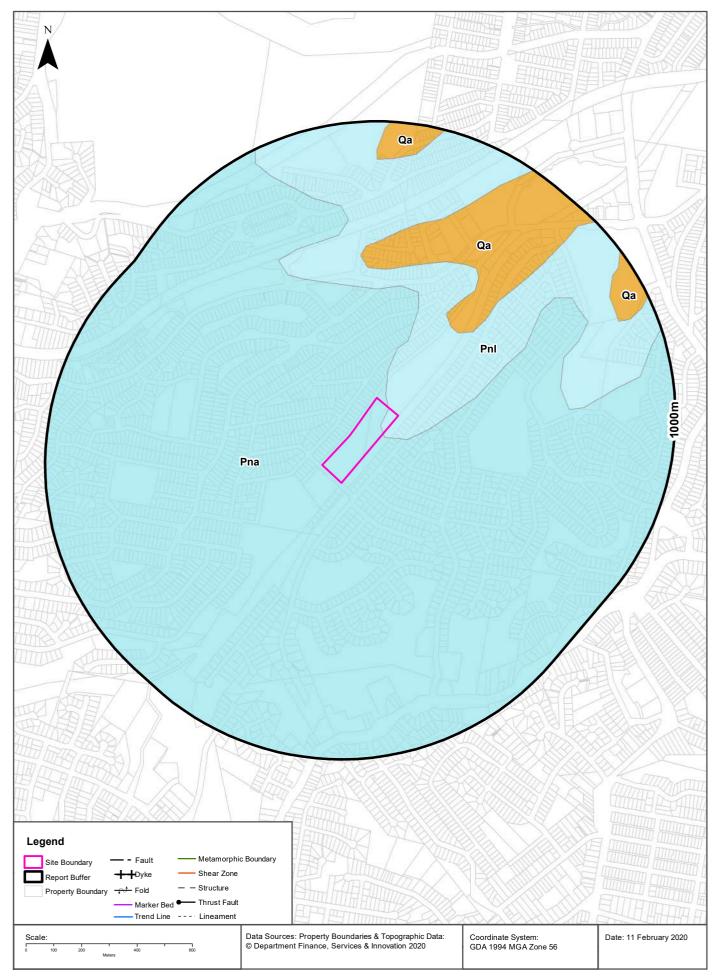
Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:


Groundwater No	Drillers Log	Distance	Direction
GW057772	0.00m-0.30m Soil 0.30m-22.00m Clay 22.00m-24.00m Shale Water Bearing	597m	North
GW061223	0.00m-4.87m Fill 4.87m-9.10m Clay 9.10m-14.60m Shale 14.60m-18.28m Sandstone 18.28m-22.80m Coal Water Supply 22.80m-30.17m Conglomerate 30.17m-32.00m Coal Water Supply 32.00m-36.50m Sandstone	1501m	North East
GW201757	0.00m-5.40m Fill; Silty Clay, weathered seam, medium to high plasticity, brown, moist 5.40m-6.10m Conglomerate, cemented, moist 6.10m-6.20m Silty Clay; medium plasticity, pale grey, moist 6.20m-6.40m Conglomerate, cemented, moist	1952m	South
GW201758	0.00m-3.50m Fill; Silty Clay, medium to high plasticity, red/brown, moist 3.50m-5.40m Fill; Silty Clay, as above, wet 5.40m-5.70m Bedrock, wet (Conglomerate?)	1958m	South
GW201749	0.00m-4.20m Fill; Gravelly Silt, low plasticity, dark grey, moist 4.20m-4.80m Silty Clay; medium plasticity, red orange, trace gravel, wet 4.80m-5.50m Conglomerate, cemented, wet	1963m	South
GW202897	0.00m-0.20m Fill; Bitumen 0.20m-0.80m Fill; Bitumen 0.20m-0.80m Fill; Sandy Gravel, brown, moist, poorly graded, fine gravel-coarse sand, high permeability, no HC odour 0.80m-5.20m Clay, Silty; with some fine gravel, red/white/yellow streaking, low plasticity, low permeability, no HC odour 5.20m-6.00m Clay, Silty; with minor gravel below 4.5m, light grey, soft becoming wet below 4.5m, no HC odour, medium permeability	1966m	South
GW201751	0.00m-0.50m Fill; Clayey Sand, fine to medium grained, brown/black, trace cobbles/boulders, moist 0.50m-2.90m Silty Gravelly Clay; medium plasticity, brown/black, moist 2.90m-3.20m Silt, Gravelly Clayey; low plasticity, pale grey, moist 3.20m-5.10m Silt, Gravelly Clayey; as above, wet 5.10m-6.00m Conglomerate, cemented, wet	1967m	South
GW201748	0.00m-4.00m Fill; Silty Clay, medium to high plasticity, red/brown, moist 4.00m-5.90m Fill; Silty Clay, as above, wet	1970m	South
GW201747	0.00m-4.50m Fill; Silty Clay, medium to high plasticity, red/brown, moist 4.50m-5.70m Fill; Silty Clay, as above, wet 5.70m-7.00m Conglomerate, cemented, wet	1971m	South
GW201750	0.00m-2.60m Fill; Gravelly Silt, low plasticity, dark grey, moist 2.60m-3.50m Fill; Silty Gravelly Clay, medium plasticity, red orange, moist 3.50m-4.90m Fill; Silty Gravelly Clay, as above, wet 4.90m-5.40m Conglomerate, cemented, wet	1971m	South
GW201755	0.00m-0.60m Fill; Sand, fine to m edium grained, yellow, sub-angular, trace cobbles/boulders, moist 0.60m-1.90m Clay; medium to high plasticity, grey/brown, moist 1.90m-2.25m Clay; as above, red/brown, moist 2.25m-3.20m Clay; as above, grey/white, moist 3.20m-6.00m Clay; as above, wet 6.00m-6.10m Conglomerate, cemented, wet 6.10m-6.20m Silty Clay; medium plasticity, grey, wet 6.20m-7.40m Conglomerate; cemented, wet	1977m	South
GW202892	0.00m-0.50m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.50m-1.40m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.40m-4.60m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity & permeability, no HC odour 4.60m-5.50m Clay, Silty Sandy; light grey, soft to firm, meidum plasticity, low permeability, no HC odour 5.50m-6.00m Conglomerate; yellow brown, rounded pebble (to 10mm) clasts of shale & sandstone in fine matrix, weak, extremely weather	1979m	South

Groundwater No	Drillers Log	Distance	Direction
GW202894	0.00m-0.20m Clay, Sandy; (topsoil), dark brown, no odour, roots & grass cover present 0.20m-0.80m Clay, Sandy; dark brown, minor gravels, roots present, fine-medium sands, no odour 0.80m-1.50m Clay; Sandy; as above, grading to orange/brown, grading to red/grey @ 1.3m 1.50m-4.30m Clay, Sandy; as above, grading to orange, with ironstone. Minor gravels, some grey @ 2.5m. Gravel to 20mm @ 2.8m 4.30m-5.00m Sandstone, grading to; extremely weathered, minor gravels & rocks to 20mm, no odour	1979m	South
GW202888	0.00m-0.30m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.30m-1.60m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.60m-4.30m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour, increasing sand 4.30m-5.20m Clay, Silty Sandy; light grey, soft to firm, medium plasticity, low permeability, slight HC odour 5.20m-6.00m Conglomerate; yellow brown, rounded pebbles sized (to 10mm) clasts of shale & sandstone in a fine matrix, weak rock, ext	1980m	South
GW202898	0.00m-0.20m Fill; bitumen 0.20m-0.80m Fill; Sandy Gravel, brown, moist, poorly graded, fine gravel-coarse sand, high permeability, no HC odour 0.80m-2.60m Clay, Silty; with fine gravels, red/brown, medium stiff, low plasticity & permeability, no HC odour 2.60m-4.70m Clay, Silty; with fine gravels, light grey, intact, low plasticity, medium permeability, no HC odour 4.70m-5.40m Clay, silty; as above, red/brown, wet, high plasticity, refusal in shale bedrock	1983m	South
GW202895	0.00m-0.50m Fill; Asphalt & concrete 0.50m-0.60m Fill; coarse sand, brown, with gravel to 30mm, no odour, moist/wet 0.60m-1.50m Clay; grey with mottled pale brown, medium plasticity, organic odour, moist/wet 1.50m-3.00m Clay; as above, grading to grey with mottled red, damp/moist @ 2.7m 3.00m-3.50m Clay, Sandy; pale brown, with minor gravels, no odour, moist 3.50m-4.50m Clay, Sandy; as above, grading to dark red with mottled brown/grey, moist. Wet @ base	1986m	South
GW201752	0.00m-4.60m Fill; Silty Clay, medium to high plasticity, red brown, moist 4.60m-4.80m Silty Gravelly Clay; low plasticity, red brown, moist-wet 4.80m-6.20m Silty Gravelly Clay; low plasticity pale grey, wet 6.20m-6.50m Conglomerate, cemented, wet	1990m	South
GW201754	0.00m-0.80m Fill; Silty Gravelly Clay; medium plasticity, red brown, trace cobbles, building debris 0.80m-3.00m Silty Clay; medium plasticity, pale grey, trace gravel 3.00m-4.60m Silty Clay; as above, red orange 4.60m-6.00m Silty Gravelly Clay; low plasticity, orange, red/brown 6.00m-6.80m Conglomerate; cemented	1991m	South
GW201756	0.00m-1.55m Fill; Clayey Sand, fine to medium grained, sub-angular, yellow brown, moist 1.55m-2.70m Silty Clay; medium plasticity, brown, moist 2.70m-2.80m Ironstone/Gravel band 2.80m-4.40m Silty Gravelly Clay; low plasticity, pale grey, wet from 3m 4.40m-5.70m Gravel, Silty Clayey; sub-angular, grey, wet 5.70m-6.20m Conglomerate, wet 6.20m-6.60m Silty Clay, pale grey, wet 6.60m-7.30m Conglomerate, wet	1991m	South
GW202890	0.00m-0.30m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, no HC odour, high permeability 0.30m-1.60m Clay; grey/olive brown, very fine to stiff, intact, low plasticity, low permeability, no HC odour 1.60m-3.80m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour 3.80m-4.80m Clay, Silty Sandy; light grye, soft to firm, meidum plasticity, low permeability, no HC odour 4.80m-6.00m Conglomerate; yellow brown, rounded pebble sized (to10mm) clasts of shale & sandstone in a fine matrix, weak, extremely	1991m	South
GW201753	0.00m-0.90m Fill; Silty Clay, medium plasticity, brown/black, trace gravel, moist 0.90m-4.30m Silty Clay; medium to high plasticity, pale grey & orange, moist 4.30m-6.90m Silty Clay; as above, wet 6.90m-7.40m Conglomerate, cemented, wet	1999m	South
GW202891	0.00m-0.50m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.50m-1.00m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.00m-3.30m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour 3.30m-4.60m Clay, Silty Sandy; light grey, soft to firm, medium plasticity, low permeability, no HC odour 4.60m-6.00m Conglomerate; yellow brown, rounded pebbles sized (to 10mm) clasts of shale & sandstone in a fine matrix, weak, extremel	1999m	South

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:250,000

Geology

30 Vista Parade, Kotara, NSW 2289

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Pna	Conglomerate, sandstone, siltstone, coal, tuff		Newcastle Coal Measures		Palaeozoic			1:250,000
Pnl	Sandstone, siltstone, claystone, coal, tuff	Lambton Subgroup	Newcastle Coal Measures	Lambton Subgroup	Palaeozoic			1:250,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Pna	Conglomerate, sandstone, siltstone, coal, tuff		Newcastle Coal Measures		Palaeozoic			1:250,000
Pnl	Sandstone, siltstone, claystone, coal, tuff	Lambton Subgroup	Newcastle Coal Measures	Lambton Subgroup	Palaeozoic			1:250,000
Qa	Undifferentiated alluvial deposits; sand, silt, clay and gravel; some residual and colluvial deposits. Includes some channel, levee, lacustrine, floodplain and swamp deposits. May include some higher level Tertiary terraces	undifferentiated			Cainozoic			1:250,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

Geological Data Source : NSW Department of Industry, Resources & Energy

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

30 Vista Parade, Kotara, NSW 2289

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

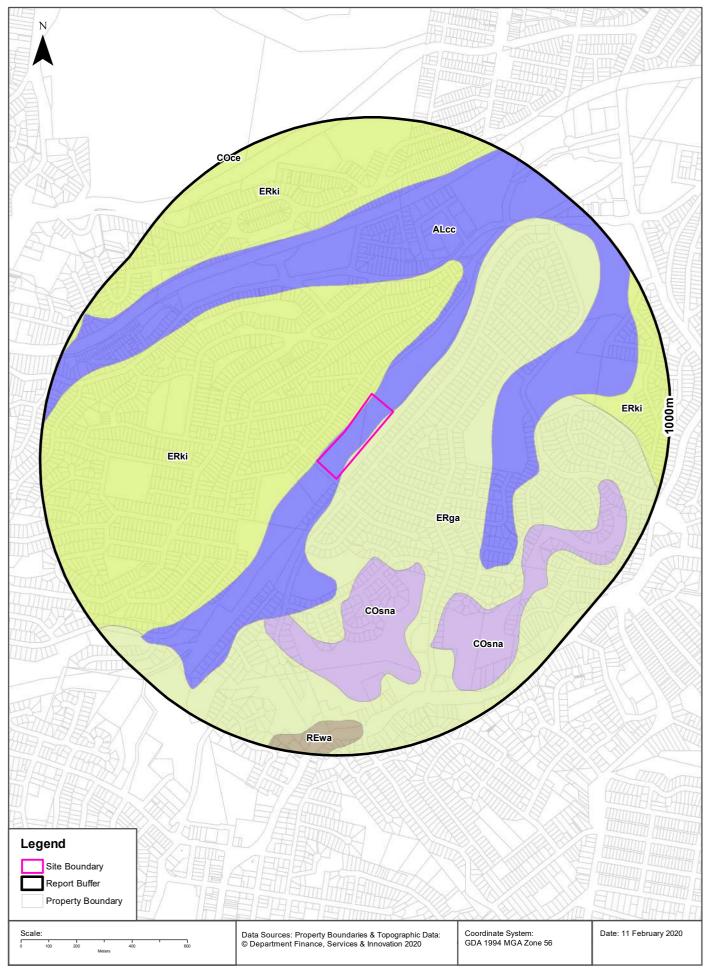
Atlas of Australian Soils

Soils

30 Vista Parade, Kotara, NSW 2289

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Tb40	Kurosol	Undulating to hilly areas with some steep slopes and cliffs, rock outcrops, and narrow terraced valleys: chief soils are hard acidic yellow mottled soils (Dy3.41) with some shallow soils such as (Um4.1) and (Uc4.1) on the steeper slopes. Associated are: (Gn2.2) soils and (Dd1) soils, both of which occur on slopes; undescribed soils in the valleys; and some (Dy5) and (Uc1.2) soils along the coast. As mapped, small areas of units Gb10 and Cb28 are included.	0m

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes

Soils

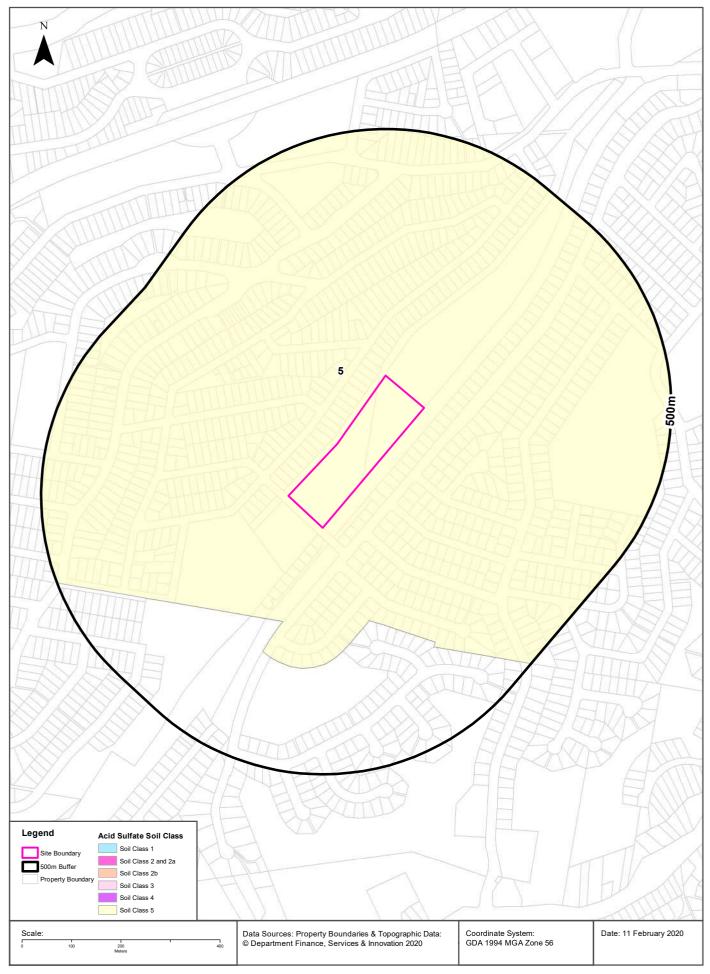
30 Vista Parade, Kotara, NSW 2289

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALcc	COCKLE CREEK		ALLUVIAL	Newcastle	1:100,000
ERga	GATESHEAD		EROSIONAL	Newcastle	1:100,000
ERki	KILLINGWORTH		EROSIONAL	Newcastle	1:100,000

What are the Soil Landscapes within the dataset buffer?


Soil Code	Name	Group	Process	Map Sheet	Scale
ALcc	COCKLE CREEK		ALLUVIAL	Newcastle	1:100,000
COce	CEDAR HILL		COLLUVIAL	Newcastle	1:100,000
COsna	STOCKRINGTON variant a		COLLUVIAL	Newcastle	1:100,000
ERga	GATESHEAD		EROSIONAL	Newcastle	1:100,000
ERki	KILLINGWORTH		EROSIONAL	Newcastle	1:100,000
REwa	WARNERS BAY		RESIDUAL	Newcastle	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

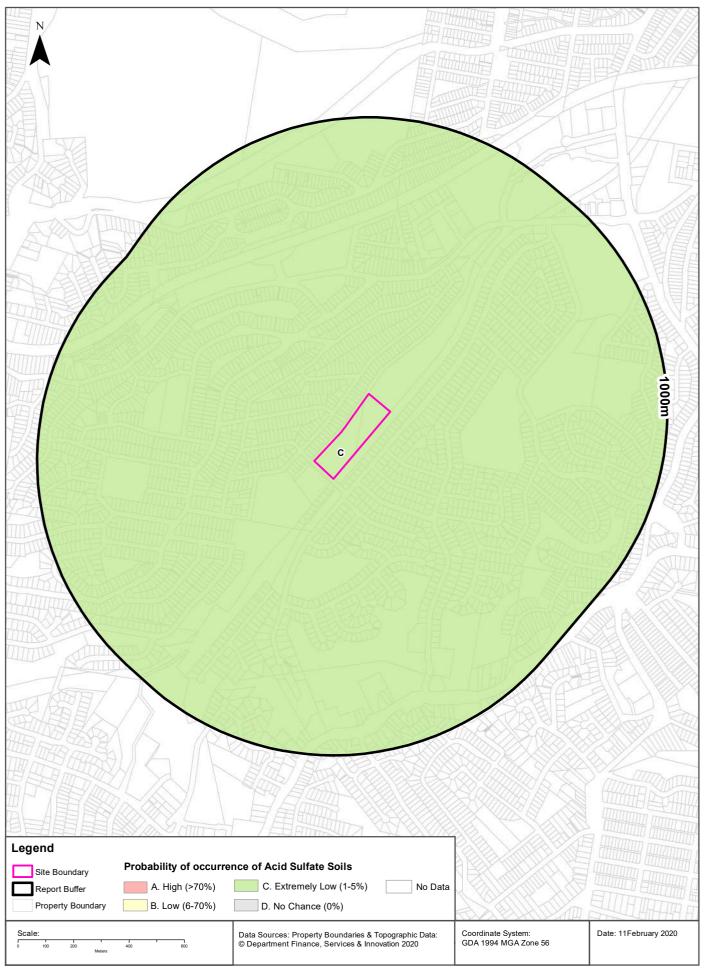
30 Vista Parade, Kotara, NSW 2289

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
5	Works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk	Newcastle Local Environmental Plan 2012

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
None				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

30 Vista Parade, Kotara, NSW 2289

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

30 Vista Parade, Kotara, NSW 2289

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

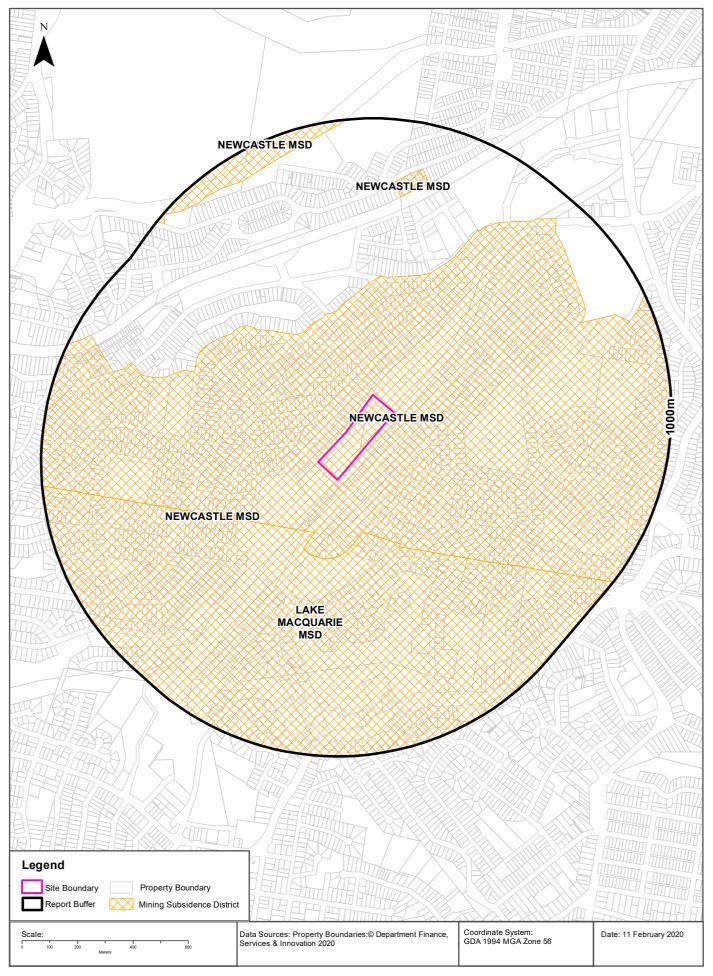
Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney


Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

Mining Subsidence Districts

30 Vista Parade, Kotara, NSW 2289

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

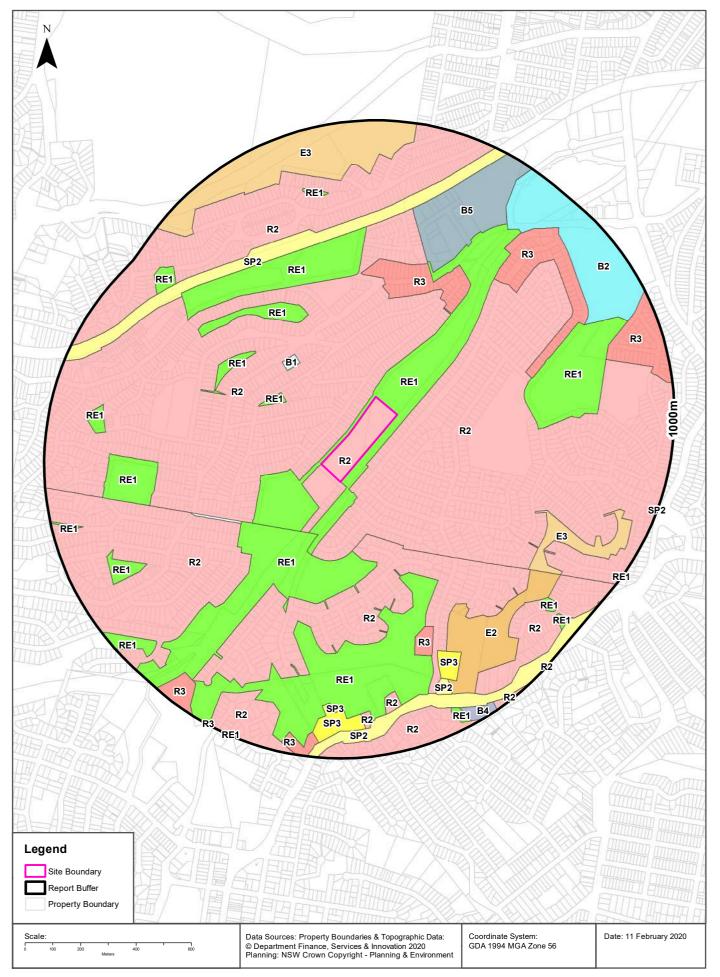
District	Distance	Direction
NEWCASTLE	0m	Onsite
LAKE MACQUARIE	207m	South West
NEWCASTLE	355m	North West

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

30 Vista Parade, Kotara, NSW 2289

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

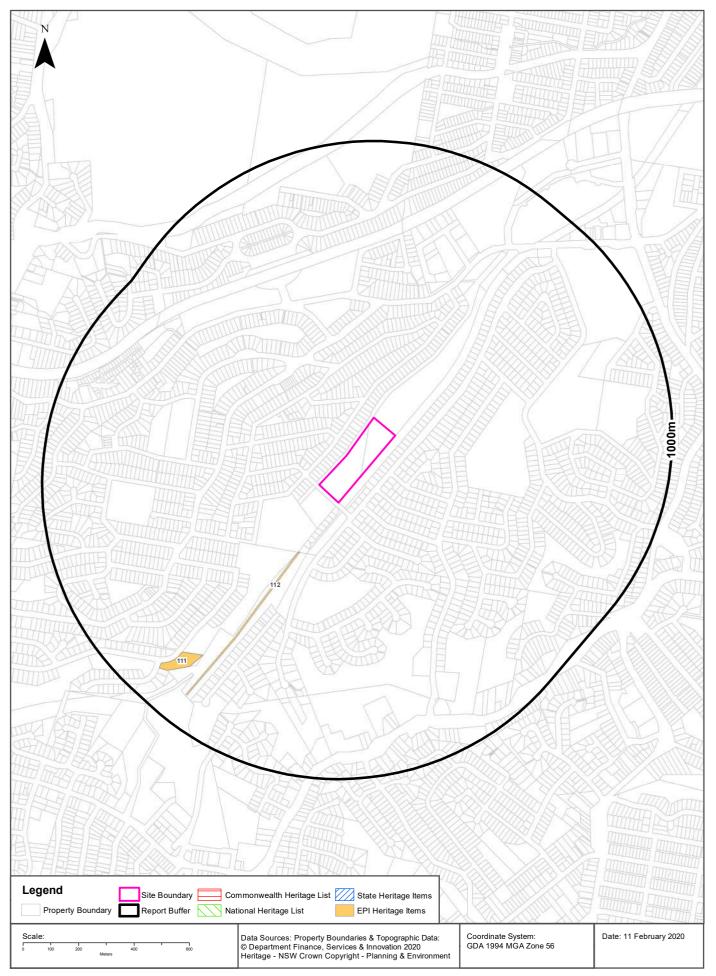
EPI Planning Zones

Environmental Planning Instrument

30 Vista Parade, Kotara, NSW 2289

Land Zoning

What EPI Land Zones exist within the dataset buffer?


Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		0m	Onsite
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		0m	North East
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		13m	West
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		29m	East
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		207m	South West
Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		210m	South
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		246m	North West
Neighbourhood Centre		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		295m	North West
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		358m	North
Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		361m	South West
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		372m	South
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		385m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		426m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		446m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		462m	East
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		487m	North East
Business Development		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		494m	North East
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		590m	West
Infrastructure	Railway	Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		592m	North West
Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		604m	South
Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		606m	South East
Environmental Management		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		608m	South East
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		632m	North
Tourist		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		703m	South
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		726m	South West
Local Centre		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		747m	North East
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		752m	North
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		779m	East
	Icour Density ResidentialPublic RecreationIcow Density ResidentialIcow Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationRedium Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationPublic RecreationInfrastructureInfrastructureIcow Density ResidentialIcow Density ResidentialIcouristPublic RecreationPublic RecreationPublic RecreationInfrastructurePublic RecreationInfrastructurePublic RecreationIcouristPublic RecreationPublic Recreation <t< td=""><td>IntersectionIntersectionLow Density ResidentialIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionNeighbourhood CentreIntersectionMedium Density ResidentialIntersectionPublic RecreationIntersectionPublic Recreation<td< td=""><td>Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2014Public RecreationNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Vublic RecreationLake Macquarie Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Nedium Density ResidentialNewcastle Local Environmental Plan 2012IndrastructureRailwayNewcastle Local</td><td>Low Density ResidentialNew Revironmental Plan 201215/06/2012 15/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 15/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201412/09/2014Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/2012Medium Density ResidentialNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06</td><td>DateDateDateLow Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationLake Macquarie Local Environmental Plan 201110/10/2014Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012NegibbourhoodNewcastle Local Environmental Plan 201215/06/201215/06/2012Velic RecreationLake Macquarie Local Environmental Plan 201112/09/201410/10/2014Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012</br></td></td<></td></t<> <td>Interview Networksite Local Environmental Plan 2012 Date Date Date Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Dublic Recreation Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Lake Macquarie Local Environmental Plan 2014 12/09/2014 10/10/2014 06/12/2019 Low Density Residential Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Neighbourhood Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Medium Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmenta</td> <td>DateDateDateDateDateLew Density Residential1Newcastle Local Environmental Plan 201215/06/201215/06/201213/09/2019Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Lew Density Residential1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Lake Macquarie Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201215/06/201213/09/20191Neugrabulc Local ResidentialNewcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcas</td> <td>Jow Density ResidentialInternational plan 2012 Environmental Plan 2012 Environmental Plan 2012 Environmental Plan 2012Stole 2012 1506/2012Stole 2012 1506/2012<</td>	IntersectionIntersectionLow Density ResidentialIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionNeighbourhood CentreIntersectionMedium Density ResidentialIntersectionPublic RecreationIntersectionPublic Recreation <td< td=""><td>Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2014Public RecreationNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Vublic RecreationLake Macquarie Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Nedium Density ResidentialNewcastle Local Environmental Plan 2012IndrastructureRailwayNewcastle Local</td><td>Low Density ResidentialNew Revironmental Plan 201215/06/2012 15/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 15/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201412/09/2014Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/2012Medium Density ResidentialNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06</td><td>DateDateDateLow Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationLake Macquarie Local Environmental Plan 201110/10/2014Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012NegibbourhoodNewcastle Local Environmental Plan 201215/06/201215/06/2012Velic RecreationLake Macquarie Local Environmental Plan 201112/09/201410/10/2014Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012</br></td></td<>	Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2014Public RecreationNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Vublic RecreationLake Macquarie Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Nedium Density ResidentialNewcastle Local Environmental Plan 2012IndrastructureRailwayNewcastle Local	Low Density ResidentialNew Revironmental Plan 201215/06/2012 15/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 15/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201412/09/2014Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/2012Medium Density ResidentialNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06	DateDateDateLow Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationLake Macquarie Local Environmental Plan 201110/10/2014Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012NegibbourhoodNewcastle Local Environmental Plan 201215/06/201215/06/2012Velic RecreationLake Macquarie Local Environmental Plan 201112/09/201410/10/2014Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local 	Interview Networksite Local Environmental Plan 2012 Date Date Date Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Dublic Recreation Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Lake Macquarie Local Environmental Plan 2014 12/09/2014 10/10/2014 06/12/2019 Low Density Residential Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Neighbourhood Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Medium Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmenta	DateDateDateDateDateLew Density Residential1Newcastle Local Environmental Plan 201215/06/201215/06/201213/09/2019Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Lew Density Residential1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Lake Macquarie Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201215/06/201213/09/20191Neugrabulc Local ResidentialNewcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcas	Jow Density ResidentialInternational plan 2012 Environmental Plan 2012 Environmental Plan 2012 Environmental Plan 2012Stole 2012 1506/2012Stole 2012 1506/2012<

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		782m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		786m	South East
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		788m	West
E3	Environmental Management		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		792m	North
SP2	Infrastructure	Infrastructure	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		797m	South
SP3	Tourist		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		801m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		802m	South
SP3	Tourist		Lake Macquarie Local Environmental Plan 2014	17/07/2015	17/07/2015	06/12/2019	Amendment No 2	818m	South
SP2	Infrastructure	Infrastructure	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		819m	South West
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		826m	North West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		827m	South East
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		835m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		868m	South East
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		889m	South West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		890m	West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		905m	South East
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		909m	South
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		910m	South
B4	Mixed Use		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		922m	South East
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		987m	South
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		988m	South East
SP2	Infrastructure	Classified Road	Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		992m	North
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		996m	South East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

30 Vista Parade, Kotara, NSW 2289

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

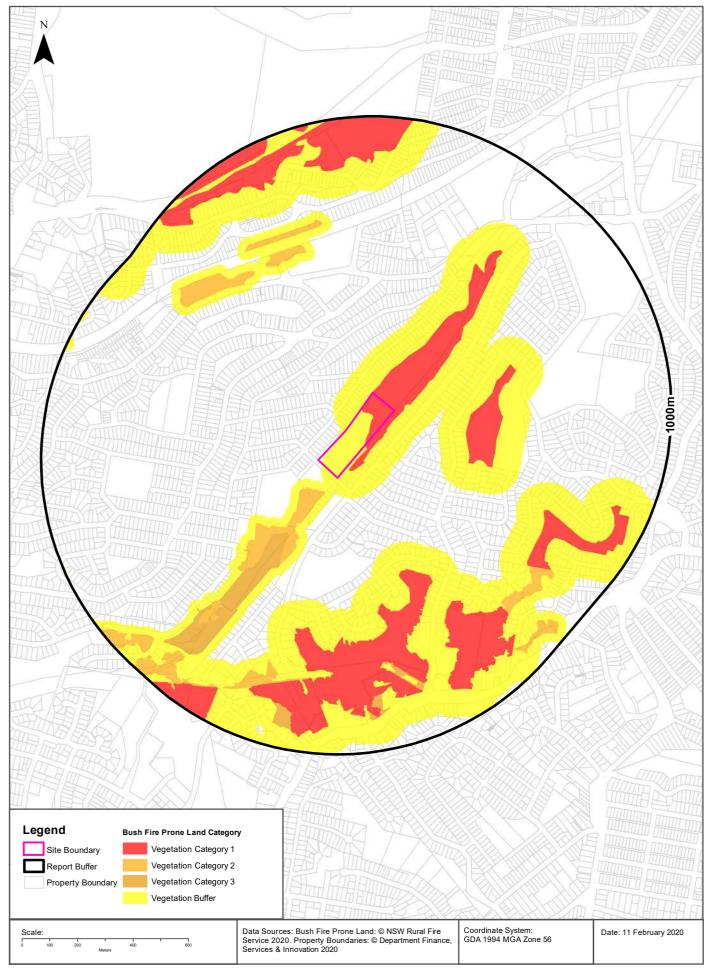
What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?


Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
112	Raspberry Gully Line Railway	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	24/11/2017	229m	South West
111	South Waratah Colliery	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	24/11/2017	737m	South West

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

30 Vista Parade, Kotara, NSW 2289

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	0m	Onsite
Vegetation Category 1	Om	Onsite
Vegetation Category 2	66m	South West
Vegetation Category 3	265m	South West

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

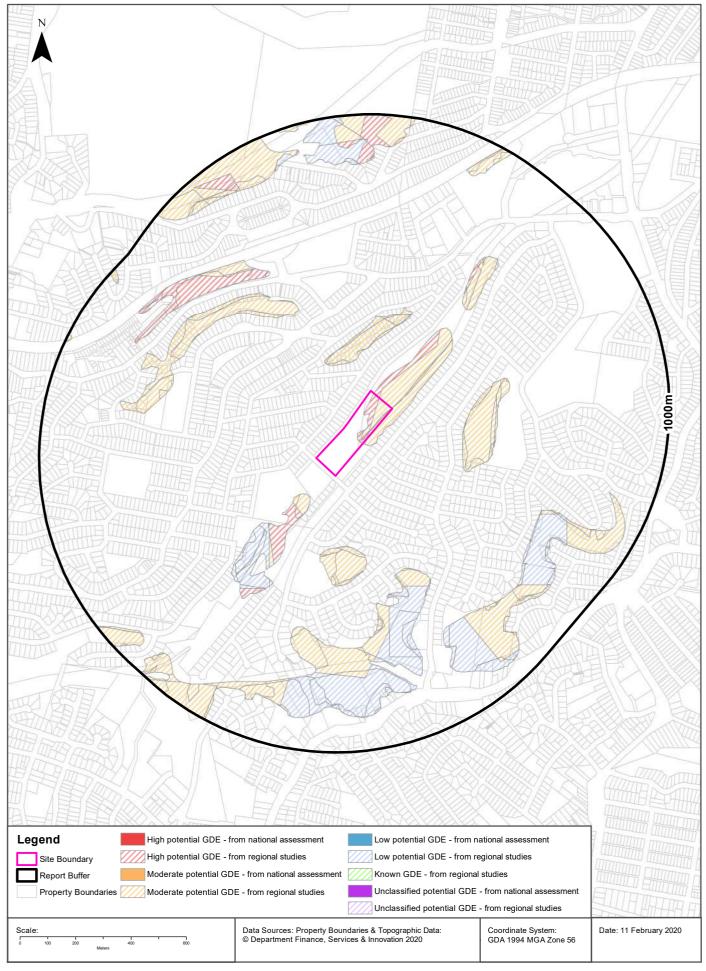
Lower Hunter and Central Coast Regional Vegetation Survey

What vegetation from the Lower Hunter and Central Coast Regional Survey exists within the dataset buffer?

Map Id	Unit Desc	Canopy Code	Canopy Cover	Species	Distance	Direction
5	Alluvial Tall Moist Forest	OF	Mid Dense (Open Forest) 50- <100% cover	E. saligna / S. glomulifera / Glochidion ferdinandi	0m	Onsite
30	Coastal Plains Smooth- barked Apple Woodland	OF	Mid Dense (Open Forest) 50- <100% cover	A. costata / C. gummifera / E. capitellata / E. umbra	0m	Onsite
15	Coastal Foothills Spotted Gum - Ironbark Forest	OF	Mid Dense (Open Forest) 50- <100% cover	C. maculata / E. umbra / E. siderophloia	284m	South
6	Coastal Narrabeen Moist Forest	OF	Mid Dense (Open Forest) 50- <100% cover	S. glomulifera / E. saligna / E. acmenoides	448m	South
5	Alluvial Tall Moist Forest	WO	Sparse (Woodland) 20-<50% cover	E. saligna / S. glomulifera / Glochidion ferdinandi	682m	North East
30	Coastal Plains Smooth- barked Apple Woodland	WO	Sparse (Woodland) 20-<50% cover	A. costata / C. gummifera / E. capitellata / E. umbra	707m	North East

Lower Hunter and Central Coast Regional Vegetation Survey: NSW Office of Environment and Heritage

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	High potential GDE - from regional studies	Deeply dissected sandstone plateaus.	Vegetation		0m
Terrestrial	High potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	Moderate potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	Low potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		289m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	2	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	5	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	6	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	8	Deeply dissected sandstone plateaus.	Vegetation		0m
Terrestrial	10	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	3	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		124m
Terrestrial	4	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		127m
Terrestrial	1	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		174m
Terrestrial	7	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		252m
Terrestrial	9	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		469m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Litoria olongburensis	Olongburra Frog	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Amaurornis moluccana	Pale-vented Bush-hen	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anas querquedula	Garganey	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Anous stolidus	Common Noddy	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	Rokamba;Jamba
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna pacificus	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	Rokamba;Camba; Jamba
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Calonectris leucomelas	Streaked Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calyptorhynchus Iathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Charadrius leschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Charadrius mongolus	Lesser Sand- plover	Vulnerable	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	JAMBA
Animalia	Aves	Egretta sacra	Eastern Reef Egret	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco hypoleucos	Grey Falcon	Endangered	Category 2	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	САМВА
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hirundo rustica	Barn Swallow	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Irediparra gallinacea	Comb-crested Jacana	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limnodromus semipalmatus	Asian Dowitcher	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Macronectes halli	Northern Giant- Petrel	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Motacilla flava	Yellow Wagtail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Phaethon rubricauda	Red-tailed Tropicbird	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Philomachus pugnax	Ruff	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Plegadis falcinellus	Glossy Ibis	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ptilinopus magnificus	Wompoo Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Thalassarche cauta	Shy Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thinornis rubricollis	Hooded Plover	Critically Endangered	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Todiramphus chloris	Collared Kingfisher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed Not Sensitive		Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Listed Not Sensitive Not		ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Macropus dorsalis	Black-striped Wallaby	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Nyctophilus bifax	Eastern Long- eared Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Antaresia stimsoni	Stimson's Python	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia		Woma	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Diplodactylus platyurus	Eastern Fat-tailed Gecko	Endangered Not Sensitive		Not Listed	
Animalia	Reptilia	Eretmochelys imbricata	Hawksbill Turtle	Not Listed	Not Sensitive	Vulnerable	
Animalia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Angophora inopina	Charmhaven Apple	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Chamaesyce psammogeton	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Davidsonia jerseyana	Davidson's Plum	Endangered	Category 2	Endangered	
Plantae	Flora	Diuris praecox	Rough Doubletail	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus parramattensis subsp. parramattensis		Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea shiressii		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Muehlenbeckia costata	Scrambling Lignum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Phaius australis	Southern Swamp Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea maritima	Coast Headland Pea	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rutidosis heterogama	Heath Wrinklewort	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Zannichellia palustris		Endangered	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species.

NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Annex E

1	1113	
1	AL	LE
1	63	1

BOREHOLE LOG REPORT

HOLE NO: BH1 FILE / JOB NO: P1677 SHEET: 1 OF 1

POSITION:

CLIENT: Catholic School Office PROJECT: Proposed Early Learning Childcare Centre LOCATION: St Nicholas Early Education Centre, 30 Vista Parade, Kotara South

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mounted	drill rig	CONTRACTOR:	DRILLER: LB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: NWR	CHECKED BY:

	TESTING & SAMPLING				MATERIAL							
Water	DCP AS 1289.6.3.2-1997 Depth Blows (m)	_ Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil T	MATERIAL DESCRIPTION ype, Plasticity or Particle Characteristic Secondary and Minor Components	c, Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
	0.0 - 0.1 6 0.1 - 0.2 20 0.2 - 0.3 Terminated		ES \0.15-0.25/ ES \0.40-0.50/ ES \0.60-0.70/			GP CL	0.25m Grave fine to 0.50m Extrem	Clayey Sandy GRAVEL, fine to coarse , fine to coarse grained sand IIIy Sandy CLAY, low plasticity, pale gr medium grained sand, fine to coarse nely Weathered Tuffaceous SILTSTO ed, pale grey / white, inferred extremely	ey / brown, gravel	M D - M	VD	FILL RESIDUAL SOIL ROCK
		PP: >400kPa		1.0 — - - 2.0 — - - - - - - - - - - - - - - - - - - -		сн	1.50m Silty with?	SLAY, high plasticity, dark grey, mottled	d orange,	D ~PL	VSt - H	RESIDUAL SOIL
							Termi	nated at 3.00 m				
	Additio	nal Comments		s	SOIL DE Based Classifica	SCRIF on Un attion S ATER Wate	ified System	SAMPLES & FIELD TESTS U - Undisturbed Sample D > Disturbed Sample ES - Environmental Sample B - Bulk Disturbed Sample MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration Test VS - Vane Shear	D - Dr M - M W - W <pl -="" m<br="">>PL - M >PL - M</pl>	oist /et oist, be oist, ap oist, ab /et, app /et, abo	low PL prox. P ove PL rox. LL ve LL mit	L VSt - Very Stiff H - Hard

BOREHOLE LOG REPORT

HOLE NO: BH2 FILE / JOB NO: P1677 SHEET: 1 OF 1

INCLINATION: 90°

POSITION:

LOC

CLIENT: Catholic School Office PROJECT: Proposed Early Learning Childcare Centre LOCATION: St Nicholas Early Education Centre, 30 Vista Parade, Kotara South

SURFACE ELEVATION:

DRILLING METHOD: Trailer mour	nted drill rig	CONTRACTOR:	DRILLER: LB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: NWR	CHECKED BY:

	TESTIN			MATERIAL								
Water	DCP AS 1289.6.3.2-199 Depth Blows (m)	Field Lests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil	MATERIAL DESCRIPTION Type, Plasticity or Particle Characteristic, Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
	0.0 - 0.1 8 0.1 - 0.2 12 0.2 - 0.3 8 0.3 - 0.4 7 0.5 - 0.6 8 0.6 - 0.7 10 0.7 - 0.8 7 0.9 - 1.0 6 1.0 - 1.1 10 1.1 - 1.2 12 1.2 - 1.3 Termina		ES 0.15-0.25/			SM	U.15m with FILL	SOIL: Silty SAND, fine to medium grained grass root fibres : Clayey Sandy GRAVEL / Gravelly SAND se grained sand, fine to coarse gravel, bro n		D	D	TOPSOIL
			ES \ <u>1.50-1.60</u> / ES \ <u>2.10-2.20</u> /	2.0-		GP	med	: Clayey GRAVEL (Coal), fine to coarse, b ium plasticity clay Sandy CLAY, high plasticity, grey, fine gr		>PL		ALLUVIUM
				- <u>3.0</u> - - -		sc	3.00m Clay clay	ey SAND, fine to medium grained, grey, †	nigh placticty	w		RESIDUAL SOIL
				4.0			graii	mely Weathered SANDSTONE / SILTST ed, grey, inferred very low strength	ONE, fine			ROCK
	Addit	ional Comments		- - CLAS	SOIL DES Based of Classifica	SCRIF on Un ttion S ATER Wate	iified System	SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental Sample B - Bulk Disturbed Sample MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration Test VS - Vane Shear	MOI: D - M - M - W - VX - VPL - VPL - VL - VL - PL - PL - PL -	bist et bist, be bist, ap bist, ab et, app et, abo	low PL prox. Pl ove PL prox. LL prox. LL mit	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

6		1	
V	AL	_L	E
1	3	1	

BOREHOLE LOG REPORT

HOLE NO: BH3 FILE / JOB NO: P1677 SHEET: 1 OF 1

POSITION:

CLIENT: Catholic School Office PROJECT: Proposed Early Learning Childcare Centre LOCATION: St Nicholas Early Education Centre, 30 Vista Parade, Kotara South SURFACE ELEVATION:

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mour	nted drill rig	CONTRACTOR:	DRILLER: LB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: NWR	CHECKED BY:

TESTING & SAMPLING						MATERIAL								
	Water	D(AS 1289.6 Depth (m)		Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	, So	MATERIAL DESCRIPTION Il Type, Plasticity or Particle Characteristic, (Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
		0.0 - 0.1 0.1 - 0.2 0.2 - 0.3	5 12 \Terminated		ES 0.00-0.15 ES 0.15-0.25	-		SM	<u>0.15m</u> wi Ex	PSOIL: Silty SAND, fine to medium grained <u>h grass root fibres</u> tremely Weathered Tuffaceous SILTSTONE ined, pale grey / white, inferred extremely to		D - M		TOPSOIL
				PP: >400kPa	ES 1.30-1.40 U50 1.20-1.55	1.0		сн	fir 2.00m Si	y CLAY, high plasticity, dark grey / mottled of grained sand			н	RESIDUAL SOIL — — — — —
						- - - - <u>-</u>		СІ-СН	in 1 3.00m	nge, fine to medium grained sand, frace we lusions	athered			
						- - - 4.0-								
						- - 5.0 —								
						-								
			Addition	al Comments		6.0 — - - -	SIFICAT		SYMBOLS	& SAMPLES & FIELD TESTS	Mo	ISTUR	F	CONSISTENCY
			AUTON	John (9189		;	SOIL DE Based Classific	SCRII on Un ation S ATER Wate	PTION hified System	Construction Statute Statute Statute <th>D - D M - M W - W ~PL - M ~PL - M ~LL - W >LL - W PL - P LL - Li</th> <th>ry loist loist, be loist, ap loist, ab /et, app /et, abc lastic Li</th> <th>elow PL pprox. P pove PL prox. LL prox. LL imit</th> <th>RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff</th>	D - D M - M W - W ~PL - M ~PL - M ~LL - W >LL - W PL - P LL - Li	ry loist loist, be loist, ap loist, ab /et, app /et, abc lastic Li	elow PL pprox. P pove PL prox. LL prox. LL imit	RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff

		B	
V	A		. 1
5	2	8	

BOREHOLE LOG REPORT

HOLE NO: BH9 FILE / JOB NO: P1678 SHEET: 1 OF 1

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mou	nted drill rig	CONTRACTOR:	DRILLER: RB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: DS	CHECKED BY:

	TESTIN	G & SAMPLING						MATERIAL				
Water	DCP AS 1289.6.3.2-199 Depth (m) Blows	7Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	, Soil T	MATERIAL DESCRIPTIO ype, Plasticity or Particle Charact Secondary and Minor Compo	eristic, Colour,	Moisture Condition	Consistency/ Relative Densitv	STRUCTURE & Other Observations
	0.5 - 0.6 4 0.6 - 0.7 2 0.7 - 0.8 1 0.8 - 0.9 2		ES \ <u>0.25-0.35</u> /				0.30m FILL FILL: mediu	BASECOURSE): Silty Sandy GR e, brown / orange, fine to coarse Sandy Silty CLAY, high plasticity, m grained sand	grained sand	D - M	D F	FILL
	$\begin{array}{c} 0.9 \cdot 1.0 & 3 \\ 1.0 \cdot 1.1 & 2 \\ 1.1 \cdot 1.2 & 6 \\ 1.2 \cdot 1.3 & 4 \\ 1.3 \cdot 1.4 & 5 \\ 1.4 \cdot 1.5 & 3 \\ 1.5 \cdot 1.6 & 2 \\ 1.6 \cdot 1.7 & 2 \\ \end{array}$		B 0.90-2.00	1.0-	- - -	сн	fine to	Ily Silty CLAY, high plasticity, bla medium gravel (coal fragments)	ck / dark brown,	>PL - >LL	St	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ES <u>1.80-2.00</u>	2.0 - 3.0-		I	2.00m Term	nated at 2.00 m				
				4.0-	- - - -							
				5.0-	-							
				7.0-	-							
				8.0-	- - - -							
				9.0 -								
	Additic	nal Comments	<u> </u>	CLA	SSIFICAT SOIL DE Based Classifica	SCRII on Ur	nified	SAMPLES & FIELD TES U - Undisturbed Sample D - Disturbed Sample ES - Environmental Samp	D - D M - M Ie W - W	loist /et		CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm
					w		er table er inflow	B - Bulk Disturbed Samp MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration VS - Vane Shear	~PL - M >PL - M ~LL - W	loist, ap loist, ab /et, app /et, abc lastic Li	prox. F ove PL prox. LL ove LL mit mit	L St - Stiff VSt - Very Stiff H - Hard

V	A	_	. E
1	6	1	-G

POSITION:

BOREHOLE LOG REPORT

HOLE NO: BH10 FILE / JOB NO: P1678 SHEET: 1 OF 1

INCLINATION: 90°

DRILLER: RB

CHECKED BY:

DRILLING METHOD: Trailer mounted drill rig

DATE SAMPLED: 07/02/2019

DATE LOGGED: 07/02/2019

SURFACE ELEVATION: CONTRACTOR: LOGGED BY: DS

Field Tests Samples E G Soil Type, Plasticity or P	DESCRIPTION article Characteristic, Colour, Minor Components	STRUCTURE & Other Observations
ES GP coarse, brown / orange,	Silty Sandy GRAVEL, fine to fine to coarse grained sand D - M	FILL D
0.4 - 0.5 7 0.5 - 0.6 4 FILL: Sandy Silty CLAY,	high plasticity, dark brown, fine to	 St
U.8 - U.9 4 Es Gravelly Silty CLAY, high 0.9 - 1.0 3 0.80-1.00 1.0 - 1.1 2	h plasticity, black / dark brown, oal fragments)	ALLUVIUM
1.0 1.7 1.8 3 1.7 1.8 3 1.8 19 gravel, trace fine grained	>LL	
19 20 3 20 21 2 21 22 2 22-23 2 2		F
2.4 - 2.5 3 2.5 - 2.6 5 2.5 - 2.6 5 - Terminated at 2.50 m 2.7 - 2.8 - - Terminated at 2.50 m		
\Terminated / 3.0		
4.0-		
5.0-		
6.0-		
9.0-		
SOIL DESCRIPTION U - Undist Based on Unified D - Disturt	& FIELD TESTS MOISTURE turbed Sample D - Dry bed Sample M - Moist	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft
WATER B - Bulk D	nmental Sample W - Wet Disturbed Sample <pl -="" below<br="" moist,="">~PL - Moist, appro</pl>	x. PL VSt - Very Stiff
Water table PP - Pocke	rre Content t Penetrometer ard Penetration Test Shoar	. LL VL - Very Loose LL L - Loose MD - Medium Dense
Water inflow	PL - Plastic Limit LL - Liquid Limit	D - Dense VD - Very Dense

P1512.GLB|Log|VCL - BOREHOLE AND TESTPIT LOG|P1678 - BOREHOLE LOGS.GPJ|19/02/2019 16:04

		2		
V	A	L	L	.[
8	0	3		6

Y/CIVILAB	CL
of echnical & Environmental Services	PRO

BOREHOLE LOG REPORT

HOLE NO: BH12 FILE / JOB NO: P1678 SHEET: 1 OF 1

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION: SURFACE ELEVATION: INCLINATION: 90° DRILLING METHOD: Trailer mounted drill rig DRILLER: RB CONTRACTOR: DATE LOGGED: 07/02/2019 DATE SAMPLED: 07/02/2019 LOGGED BY: DS CHECKED BY:

	TESTIN	G & SAMPLING						MA	TERIAL				
Water	DCP AS 1289.6.3.2-1997 Depth (m) Blows	, Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil T	MATERIAL pe, Plasticity or F Secondary and	DESCRIPTION Particle Characteristic, Minor Components	Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
	0.5 - 0.6 10 0.6 - 0.7 10/50mm Refusal		ES \ <u>0.15-0.25</u> ES \ <u>0.50-0.60</u> ES \ <u>1.20-1.30</u>			CH CH	0.30m FILL: orang 0.60m Weatt 10w st Silty S 1.00m Silty S	Silty Sandy GRAV e, fine to coarse <u>c</u> lered SANDSTON rength AND, fine to med andy CLAY, high	o medium grained, grey /EL, fine to coarse, bro rrained sand UE, fine grained, grey, ium grained, brown plasticity, brown, fine grasticity, brown, fin	wm / inferred very 	M D - M 		FILL
							Termi	nated at 2.00 m					
	Additio	nal Comments		SC I	DIL DES Based o assifica W/	SCRIP on Unit tion Sy ATER Water	fied ystem	U - Undis D - Distur ES - Enviro B - Bulk I MC - Moiste PP - Pocke	et Penetrometer lard Penetration Test	MOI D - Dr M - M, V - W <pl -="" m,<br="">-PL - M, -PL - M, -LL - W >LL - W PL - P, LL - Lit</pl>	oist et oist, be oist, ap oist, ab et, app et, abo	elow PL pprox. P pove PL prox. LL prox. LL imit	VSt - Stiff VSt - Very Stiff H - Hard

Annex F

					Me	etals							TRH NEP	PM (2013)				BT	ΓEX	
	EY/CIVILAB Geotechnical & Environmental Services																			
		Arsenic	Cadmic Cadmic mg/kg	Copper	Chromium	Nickel	peae mg/kg	zuc	Mercury	mg/kg	TRH C6-C10 Fraction	TTRH C6-C10 less BTEX	TRH >C10-C16 Fraction	TRH >C10-C16 Fraction less N	Ba/kg TRH >C16-C34 Fraction	Ba/kg TRH >C34-C40 Fraction	Benzene	Ethylbenzene	Toluene	
Limit of Reporting		mg/kg 2	0.4	mg/kg 5	mg/kg 5	mg/kg 5	5	mg/kg 5	mg/kg 0.05	0.5	mg/kg 20	mg/kg 20	mg/kg 50	mg/kg 50	100	100	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	┢
EILs (NEPM 2013)		100				-	1100	-		170										t
ESLs - Fine (NEPM 20	013)											180		120	1300	5600	65	125	105	t
ESLs - Coarse (NEPN	1 2013)											180		120	300	2800	50	70	85	t
HIL A (NEPM 2013)		100	20	6000	100	400	300	7400	40											T
HSL A - Soil Vapour (Clay 0 - <1m (NEPM 2013)									5		50		280			0.7	NL	480	Γ
Management Limits	- Fine Soil (NEPM 2013)										800		1,000		3,500	10,000				Γ
Management Limits	- Coarse Soil (NEPM 2013)										700		1,000		2,500	10,000				
HSL A - Direct Conta	act (CRC Care 2011)									1,400	4,400		3,300		4,500	6,300	100	4,500	14,000	
		-																		_
Sample ID	Sampled Date																			
BH1_0.15-0.25	7/02/2019	7	<0.3	3.5	7.1	24	2.0	27	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	Ļ
BH1_0.4-0.5	7/02/2019	7	<0.3	4.6	11	17	2.0	20	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	╞
BH2_0.15-0.25	7/02/2019	6	<0.3	3.5	7.2	21	1.6	91	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	╞
BH2_0.8-0.9	7/02/2019	8	<0.3	5.2	11	23	2.4	44	< 0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	╀
BH3_0.15-0.25	7/02/2019	7	< 0.3	2.9	5.8	19	1.6	47	< 0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	╀
BH3_0.8-0.9	7/02/2019	5	<0.3	4.3	4.7	12	1.6	17	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	┝
BH9_0.25-0.35 BH9_0.7-0.8	7/02/2019 7/02/2019	4 9	<0.3 <0.3	8.2 0.6	10 7.4	3 34	3.4 1.9	35 56	<0.05 0.09	<0.1 <0.1	<25 <25	<25 <25	<25 36	<25 36	<90 180	<120 <120	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	╀
BH9_0.7-0.8 BH10_0.2-0.3	7/02/2019	6	<0.3	9.4	12	34 12	4.8	37	<0.05	<0.1	<25	<25	<25	30 <25	<90	<120	<0.1	<0.1	<0.1	╀
BH10_0.2-0.3 BH10_0.8-1.0	7/02/2019	9	<0.3	2.4	8.5	28	2.3	46	0.10	<0.1	<25	<25	34	34	130	<120	<0.1	<0.1	<0.1	┝
BH12_0.15-0.25	7/02/2019	7	0.4	3.7	7.8	23	2.0	65	0.10	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	┢
BH12_0.5-0.6	7/02/2019	4	<0.3	5.4	15	8	2.6	24	< 0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	t
<u> </u>	•					•									•					-
Statistical Summary	1																			
Number of Results		7	7	7	7	7	7	7	7	0	1	0	0	0	1	1	0	0	0	Г
Number of Detects		7	0	7	7	7	7	7	0	0	0	0	0	0	0	0	0	0	0	ſ
Minimum Detect		4	0	5.4	15	8	2.6	24	0	0	0	0	0	0	0	0	0	0	0	ſ
Maximum Detect		4	0	5.4	15	8	2.6	24	0	0	0	0	0	0	0	0	0	0	0	
Average Concentrati	ion	4	-	5.4	15	8	2.6	24	-	-	-	-	-	-	-	-	-	-	-	ſ
	e Exceedances	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3

0
0
0
0
-
0

				P	AH							0	СР					OPP	РСВ
CIN	EY/CIVILAB eotechnical & Environmental Services																		
		Benzo(a)pyrene W ^g /kg	Benzo(a)pyrene TEQ (lower bound)		Benzo(a)pyrene TEQ (upper bound) ad	mg/kg	Total PAH wg/kg	mg/kg	mg/kg	mg/kg	u Mg/kg	Dieldrin mg/kg	Endosulfan I wg/kg	Endosulfan II wg/kg	ւլ սեր այ mg/kg	Heptachlor Wg/kg	≅ gay gay Methoxychlor	g gy Shlorpyrifos	Total PCB*
Limit of Reporting		0.5	0.5	0.5	0.5	0.5	0.5	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.2	0.1
EILs (NEPM 2013)						170				180									
ESLs - Coarse/Fine (NEPM 2013)	0.7																	
HIL A (NEPM 2013)			3	3	3		300	240	240	240	6	6	270	270	10	6	300	160	1
HSL A - Direct Conta	act (CRC Care 2011)					1,400													
		_																	
Sample ID	Sampled Date		r	1		1	1		1		-	1	1	r	1	1	1		
BH1_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH1_0.4-0.5	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
BH2_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH2_0.8-0.9	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	1.6	-	-	-	-	-	-	-	-	-	-	-	-
BH3_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH3_0.8-0.9	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
BH9_0.25-0.35	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH9_0.7-0.8	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	2.6	-	-	-	-	-	-	-	-	-	-	-	-
BH10_0.2-0.3	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH10_0.8-1.0	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	2.3	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
BH12_0.15-0.25	7/02/2019	0.2	0.2	0.3	0.3	<0.1	2.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH12_0.5-0.6	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
Statistical Summary	/																		
Number of Results		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Number of Detects		1	1	1	1	0	5	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Detect		0.2	0.2	0.3	0.3	0	1.1	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Detect		0.2	0.2	0.3	0.3	0	2.6	0	0	0	0	0	0	0	0	0	0	0	0
															1				
Average Concentrat	tion	0.2	0.2	0.3	0.3	-	1.96	-	-	-	-	-	-	-	-	-	-	-	-

Environmental Site Assessment St James Primary School, 30 Vista Parade, Kotara - NSW VC Ref: P1677

VALLEY/CIVILAB	LOR	Unit	Primary Sample	QA Sample	RPD
Geotechnical & Environmental Services	LUK	Unit	BH3_0.15-0.25	DUP 2	KPD
TRH					
TRH C6-C10 Fraction	20	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH C6-C10 less BTEX	20	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction	50	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction less N	50	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C16-C34 Fraction	100	mg/kg	<u>45</u>	<u>45</u>	0.0
TRH >C34-C40 Fraction	100	mg/kg	<u>60</u>	<u>60</u>	0.0
Naphthalene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
BTEX					
Benzene	0.1	mg/kg	0.05	0.05	0.0
Ethylbenzene	0.1	mg/kg	0.05	0.05	0.0
m&p-Xylenes	0.2	mg/kg	0.1	0.1	0.0
o-Xylene	0.1	mg/kg	0.05	0.05	0.0
Toluene	0.1	mg/kg	0.05	0.05	0.0
Xylenes - Total	0.3	mg/kg	0.15	0.15	0.0
Metals					
Arsenic	2	mg/kg	7	7	0.0
Cadmium	0.4	mg/kg	<u>0.15</u>	<u>0.15</u>	0.0
Chromium	5	mg/kg	2.9	3.3	-12.9
Copper	5	mg/kg	5.8	6	-3.4
Lead	5	mg/kg	19	17	11.1
Mercury	0.1	mg/kg	0.025	0.025	0.0
Nickel	5	mg/kg	1.6	1.5	6.5
Zinc	5	mg/kg	47	43	8.9
РАН					
Acenaphthene	1	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Acenaphthylene	1	mg/kg	<u>0.05</u>	0.05	0.0
Anthracene	0.5	mg/kg	<u>0.05</u>	0.05	0.0
Benz(a)anthracene	0.5	mg/kg	<u>0.05</u>	0.05	0.0
Benzo(a)pyrene	5	mg/kg	<u>0.05</u>	0.05	0.0
Benzo(a)pyrene TEQ (lower bound)	0.5	mg/kg	<u>0.1</u>	<u>0.1</u>	0.0
Benzo(a)pyrene TEQ (medium bound)	0.5	mg/kg	<u>0.15</u>	<u>0.15</u>	0.0
Benzo(a)pyrene TEQ (upper bound)	0.2	mg/kg	<u>0.1</u>	<u>0.1</u>	0.0
Benzo(b&j)fluoranthene	1	mg/kg	<u>0.05</u>	0.05	0.0
Benzo(g.h.i)perylene	0.4	mg/kg	0.05	0.05	0.0
Benzo(k)fluoranthene	5	mg/kg	0.05	0.05	0.0
Chrysene	1	mg/kg	0.05	0.05	0.0
Fluoranthene	0.5	mg/kg	0.1	0.2	-66.7
Fluorene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Naphthalene	0.5	mg/kg	<u>0.05</u>	0.05	0.0
Phenanthrene	0.5	mg/kg	0.05	0.1	-66.7
Pyrene	0.5	mg/kg	0.1	0.2	-66.7
Total PAH	0.5	mg/kg	<u>0.4</u>	<u>0.4</u>	0.0

Notes

RPD = Relative Percentage Difference.

RPD assessment criteria were adopted in general accordance with NEPM Schedule B3 Section 3.5 (NEPC 2013). RPDs where both primary and duplicate results were < 2.5 times the LOR were not considered. RPDs where primary and/or duplicate results were >2.5 times the LOR were assessed based on a threshold of +/- 30%. Exceedence of this trheshold triggered consideration of associated data quality.

Geotechnical & Environmental Services	LOR Soil	Trip Spike Soil	Trip Blank Soil
Date			
Unit of Measure	mg/kg	% Recovery	mg/kg
BTEX			
Benzene	0.1	89%	<u>0.05</u>
Toluene	0.1	86%	<u>0.05</u>
Ethylbenzene	0.1	89%	<u>0.05</u>
m&p-Xylenes	0.2	89%	<u>0.1</u>
o-Xylene	0.1	89%	<u>0.05</u>
Xylenes - Total	0.3	_	<u>0.15</u>

Annex G

ontact	Jake Duck	Manager	Huong Crawford
Client	VALLEY CIVILAB PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 3127 THORNTON NSW 2322	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4966 1844	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jake.duck@vclab.com.au	Email	au.environmental.sydney@sgs.com
Project	P1677-KOTARA	SGS Reference	SE189064 R0
Order Number	03934	Date Received	11 Feb 2019
Samples	16	Date Reported	18 Feb 2019

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

Teresa Nguyen Organic Chemist

Kamrul Ahsan Senior Chemist

Armln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 www. f +61 2 8594 0499

www.sgs.com.au

		ample Number Sample Matrix Sample Date Sample Name	SE189064.001 Soil 07 Feb 2019 BH1_0.15-0.25	SE189064.002 Soil 07 Feb 2019 BH1_0.4-0.5	SE189064.003 Soil 07 Feb 2019 BH2_0.15-0.25	SE189064.004 Soil 07 Feb 2019 BH2_0.8-0.9
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	83 92	78 88	77 86	79 89
d8-toluene (Surrogate)	%	-	89	85	83	88
Bromofluorobenzene (Surrogate)	%	-	79	78	78	78
Totals	1					
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes	sted: 14/2/2	019				
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates	1			I		
Dibromofluoromethane (Surrogate)	%	-	83	78	77	79
d4-1,2-dichloroethane (Surrogate)	%	-	92	88	86	89
d8-toluene (Surrogate)	%	-	89	85	83	88
Bromofluorobenzene (Surrogate)	%	-	79	78	78	78
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

	Sa	nple Number ample Matrix Sample Date ample Name	Soil 07 Feb 2019	SE189064.002 Soil 07 Feb 2019 BH1_0.4-0.5	SE189064.003 Soil 07 Feb 2019 BH2_0.15-0.25	SE189064.004 Soil 07 Feb 2019 BH2_0.8-0.9
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403						
TRH C10-C14	malka	20	<20	<20	<20	<20
	mg/kg	20		<20		<20 75
TRH C15-C28 TRH C29-C36	mg/kg mg/kg	45 45	<45 <45	<45 <45	<45 <45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	1420 Tested	d: 14/2/2019)			
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.2	0.2	0.4
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	0.3	0.2
Pyrene	mg/kg	0.1	0.1	<0.1	0.2	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.1	0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18) Total PAH (NEPM/WHO 16)	mg/kg mg/kg	0.8	<0.8	<0.8	<0.8	1.6
Surrogates	iiig/kg	0.0	~0.0		40.0	
d5-nitrobenzene (Surrogate)	%	-	94	92	96	92
2-fluorobiphenyl (Surrogate)	%	-	102	104	102	94
d14-p-terphenyl (Surrogate)	%	-	100	98	100	92
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	_
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	-
Aldrin	mg/kg	0.1	<0.1	-	<0.1	-
Beta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Delta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	-
Alpha Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
Gamma Chlordane	mg/kg	0.1	<0.1	-	<0.1	-
			<0.1	-	<0.1	-
Alpha Chlordane	mg/kg	0.1	-0.1			
Alpha Chlordane trans-Nonachlor	mg/kg mg/kg	0.1	<0.1	-	<0.1	-
				-		-
trans-Nonachlor	mg/kg	0.1	<0.1		<0.1	

SE189064 R0

-

	:	mple Number Sample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189064.002 Soil 07 Feb 2019 BH1_0.4-0.5	SE189064.003 Soil 07 Feb 2019 BH2_0.15-0.25	SE189064.004 Soil 07 Feb 2019 BH2_0.8-0.9
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019 (d	continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103	-	107	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Dichlorvos	mg/kg	0.5	<0.5	-	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	-	<0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	-	<0.2	-
Malathion	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	-

	iiig/kg	0.2	40.2	-	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2
Methidathion	mg/kg	0.5	<0.5	-	<0.5
Ethion	mg/kg	0.2	<0.2	-	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	-	<1.7

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	102	-	102	-
d14-p-terphenyl (Surrogate)	%	-	100	-	100	-

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-
			1	1		1
Surrogates						

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103	-	107	-
--	---	---	---	-----	---	-----	---

	S	mple Number ample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189064.002 Soil 07 Feb 2019 BH1_0.4-0.5	SE189064.003 Soil 07 Feb 2019 BH2_0.15-0.25	SE189064.004 Soil 07 Feb 2019 BH2_0.8-0.9
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/Ma	terials by ICPOES Met	hod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	7	7	6	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	3.5	4.6	3.5	5.2
Copper, Cu	mg/kg	0.5	7.1	11	7.2	11
Nickel, Ni	mg/kg	0.5	2.0	2.0	1.6	2.4
	mg/kg	1	24	17	21	23
Lead, Pb				20	91	44
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201	9 mg/kg	0.05	27 <0.05	<0.05	<0.05	<0.05
Lead, Pb Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2	9 mg/kg					<0.05
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury	9 mg/kg					<0.05 9.9
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth	19 mg/kg 2019	0.05	<0.05	<0.05	<0.05	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As	9 mg/kg 2019 %w/w od: AN318 Tested: 14/2	0.05	<0.05 9.4	<0.05	<0.05	9.9
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd	19 mg/kg 2019 %w/w od: AN318 Tested: 14/2 μg/L	0.05 0.5 2/2019	<0.05 9.4	<0.05	<0.05	9.9
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg %w/w od: AN318 Tested: 14/2 µg/L µg/L	0.05 0.5 2/2019 1 0.1	<0.05 9.4	<0.05	<0.05	9.9 - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg %w/w %w/w pg/L µg/L	0.05 0.5 2/2019 1 0.1 1	<0.05 9.4	<0.05	<0.05	9.9 - - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture	19 mg/kg 2019 %w/w od: AN318 Tested: 14/2 µg/L µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1 1	<0.05 9.4 - - - -	<0.05	<0.05	9.9 - - - - -

Mercury	mg/L	0.0001	-	-	-	-

	ę	mple Number Sample Matrix Sample Date Sample Name	SE189064.005 Soil 07 Feb 2019 BH3_0.15-0.25	SE189064.006 Soil 07 Feb 2019 BH3_0.8-0.9	SE189064.007 Soil 07 Feb 2019 BH9_0.25-0.35	SE189064.008 Soil 07 Feb 2019 BH9_0.7-0.8						
Parameter	Units	LOR										
VOC's in Soil Method: AN433 Tested: 14/2/2019												
Monocyclic Aromatic Hydrocarbons												
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2						
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
Polycyclic VOCs												
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	<u> </u>	82	82 92	76 87	79 87						
d8-toluene (Surrogate)	%	-	86	89	82	88						
Bromofluorobenzene (Surrogate)	%	-	76	75	73	73						
Totals												
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3						
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6						
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes	sted: 14/2/20)19		1	I							
TRH C6-C10	mg/kg	25	<25	<25	<25	<25						
TRH C6-C9	mg/kg	20	<20	<20	<20	<20						
Surrogates				I								
Dibromofluoromethane (Surrogate)	%	-	82	82	76	79						
d4-1,2-dichloroethane (Surrogate)	%	-	79	92	87	87						
d8-toluene (Surrogate)	%	-	86	89	82	88						
Bromofluorobenzene (Surrogate)	%	-	76	75	73	73						
VPH F Bands												
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1						
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25						

	Sa	nple Number Imple Matrix Sample Date ample Name	c Soil 9 07 Feb 2019	SE189064.006 Soil 07 Feb 2019 BH3_0.8-0.9	SE189064.007 Soil 07 Feb 2019 BH9_0.25-0.35	SE189064.008 Soil 07 Feb 2019 BH9_0.7-0.8
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40						
TRH C10-C14	mg/kg	20	<20	<20	<20	20
TRH C15-C28	mg/kg	45	<45	<45	<45	180
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	200
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	210
TRH F Bands	1					
TRH >C10-C16	malka	25	<25	<25	<25	36
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	36
	mg/kg		<25		<25	180
TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg	90 120	<90	<90 <120	<90	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: Al	mg/kg	120		<120	<120	<120
				1		
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.7
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.8
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	0.2
Pyrene	mg/kg	0.1	0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	2.6
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	1.4
Surrogates	1			-		
d5-nitrobenzene (Surrogate)	%	-	94	94	92	82
2-fluorobiphenyl (Surrogate)	%	-	106	102	96	98
d14-p-terphenyl (Surrogate)	%	-	104	100	96	98
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	-
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	-
		0.1	<0.1	-	<0.1	-
Aldrin	mg/kg				<0.1	-
Aldrin Beta BHC	mg/kg mg/kg	0.1	<0.1	-	<0.1	
		0.1	<0.1 <0.1	-	<0.1	-
Beta BHC	mg/kg					-
Beta BHC Delta BHC	mg/kg mg/kg	0.1	<0.1	-	<0.1	
Beta BHC Delta BHC Heptachlor epoxide o.p ⁻ DDE Alpha Endosulfan	mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.2	-	<0.1 <0.1 <0.1 <0.2	-
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	-
Beta BHC Delta BHC Heptachlor epoxide o.p ⁻ DDE Alpha Endosulfan	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	- - - -	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	
Beta BHC Delta BHC Heptachlor epoxide o.p ⁻ DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.2 <0.1	- - - -	<0.1 <0.1 <0.1 <0.2 <0.1	- - - -
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	- - - - - -	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	- - - -
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1	- - - - - - - - -	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - -

SE189064 R0

<1.7

-

-

	:	mple Number Sample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189064.006 Soil 07 Feb 2019 BH3_0.8-0.9	SE189064.007 Soil 07 Feb 2019 BH9_0.25-0.35	SE189064.008 Soil 07 Feb 2019 BH9_0.7-0.8
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	(continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	102	-	102	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019 Dichlorvos		0.5	<0.5	_	<0.5	
Direthoate	mg/kg	0.5	<0.5		<0.5	
Dimethoate Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
	mg/kg			-		
Fenitrothion Malathion	mg/kg	0.2	<0.2	-	<0.2	-
	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2		-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	
Bromophos Ethyl	mg/kg		<0.2	-		-
Methidathion	mg/kg	0.5	<0.5	-	<0.5	-
Ethion	mg/kg	0.2	<0.2	-	<0.2	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	<0.2	-

Surrogates

Total OP Pesticides*

2-fluorobiphenyl (Surrogate)	%	-	106	-	96	-
d14-p-terphenyl (Surrogate)	%	-	104	-	96	-

1.7

<1.7

mg/kg

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-
Surrogates						

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	102	-	102	-
--	---	---	---	-----	---	-----	---

-

	s	mple Number Sample Matrix Sample Date Sample Name	SE189064.005 Soil 07 Feb 2019 BH3_0.15-0.25	SE189064.006 Soil 07 Feb 2019 BH3_0.8-0.9	SE189064.007 Soil 07 Feb 2019 BH9_0.25-0.35	SE189064.008 Soil 07 Feb 2019 BH9_0.7-0.8
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/Ma	terials by ICPOES Met	thod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	7	5	4	9
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	2.9	4.3	8.2	0.6
Copper, Cu	mg/kg	0.5	5.8	4.7	10	7.4
Nickel, Ni	mg/kg	0.5	1.6	1.6	3.4	1.9
	mg/kg	1	19	12	3	34
Lead, Pb			47	17	35	56
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201	9 mg/kg	0.05	47 <0.05	<0.05	<0.05	0.09
Lead, Pb Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2	9 mg/kg					0.09
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury	9 mg/kg					0.09
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Metho	9 mg/kg	0.05	<0.05	<0.05	<0.05	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Metho Arsenic, As	9 mg/kg 2019 %w/w od: AN318 Tested: 14/2	0.05	<0.05	<0.05 8.0	<0.05	13
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Metho Arsenic, As Cadmium, Cd	19 mg/kg 2019 %w/w od: AN318 Tested: 14/2 μg/L	0.05 0.5 2/2019 1	<0.05	<0.05 8.0	<0.05	13
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Metho Arsenic, As Cadmium, Cd Chromium, Cr	19 mg/kg 2019 %w/w pd: AN318 Tested: 14/2 µg/L µg/L	0.05 0.5 2/2019 1 0.1	<0.05	<0.05 8.0 - -	<0.05 6.1	13
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Metho Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	19 mg/kg 2019 %w/w od: AN318 Tested: 14/7 µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1	<0.05	<0.05 8.0 - - -	<0.05 6.1	- - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/201 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture	19 mg/kg 2019 %w/w bd: AN318 Tested: 14/7 µg/L µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1 1 1	<0.05	<0.05 8.0 - - - - - -	<0.05 6.1	- - - - -

Mercury	mg/L	0.0001	-	-	-	

	S	mple Number ample Matrix Sample Date Sample Name	SE189064.009 Soil 07 Feb 2019 BH10_0.2-0.3	SE189064.010 Soil 07 Feb 2019 BH10_0.8-1.0	SE189064.011 Soil 07 Feb 2019 BH12_0.15-0.25	SE189064.012 Soil 07 Feb 2019 BH12_0.5-0.6
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	79 91	74	77	84
d4-ti,2-dichioroetnane (Surrogate) d8-toluene (Surrogate)	%	-	86	82	85	91
Bromofluorobenzene (Surrogate)	%		77	72	75	73
Totals	,0				10	10
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
	sted: 14/2/20					
	5100. 14/2/20					
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	79	74	77	84
d4-1,2-dichloroethane (Surrogate)	%	-	91	82	86	87
d8-toluene (Surrogate)	%	-	86	82	85	91
Bromofluorobenzene (Surrogate)	%	-	77	72	75	73
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

	Sa	nple Number ample Matrix Sample Date ample Name	SE189064.009 Soil 07 Feb 2019 BH10_0.2-0.3	SE189064.010 Soil 07 Feb 2019 BH10_0.8-1.0	SE189064.011 Soil 07 Feb 2019 BH12_0.15-0.25	SE189064.012 Soil 07 Feb 2019 BH12_0.5-0.6
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403						
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	140	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	140	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
	5.5				-	
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	34	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	34	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	130	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	420 Tested	1: 14/2/2019)			
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	0.5	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	0.5	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	0.7	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.3	0.2	0.5	<0.1
Pyrene	mg/kg	0.1	0.2	0.2	0.4	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.1	0.2	0.2	<0.1
Chrysene	mg/kg	0.1	0.1	0.1	0.2	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	0.2	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3	<0.2
Total PAH (18)	mg/kg	0.8	1.1	2.3	2.2	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.1	1.3	2.2	<0.8
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	94	84	96	94
2-fluorobiphenyl (Surrogate)	%	-	100	100	104	102
d14-p-terphenyl (Surrogate)	%	-	98	98	100	100
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019]
Hevechlorohenzene (HCR)	malk-	0.1	-0 1		-0.1]
Hexachlorobenzene (HCB) Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
Alpha BHC Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Aldrin	mg/kg	0.1	<0.1	-	<0.1	-
Alonn Beta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Delta BHC	mg/kg mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1	-	<0.1	_
o,p'-DDE	mg/kg	0.1	<0.1	_	<0.1	-
Alpha Endosulfan	mg/kg	0.2	<0.1		<0.2	_
Gamma Chlordane	mg/kg	0.2	<0.2	_	<0.2	_
Alpha Chlordane	mg/kg	0.1	<0.1		<0.1	
trans-Nonachlor	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDE	mg/kg	0.1	<0.1		<0.1	
Dieldrin	mg/kg	0.2	<0.2		<0.2	-
Endrin	mg/kg	0.2	<0.2		<0.2	-
18-February-2019				1		Pag

SE189064 R0

	٤	mple Number Sample Matrix Sample Date Sample Name	SE189064.009 Soil 07 Feb 2019 BH10_0.2-0.3	SE189064.010 Soil 07 Feb 2019 BH10_0.8-1.0	SE189064.011 Soil 07 Feb 2019 BH12_0.15-0.25	SE189064.012 Soil 07 Feb 2019 BH12_0.5-0.6
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	(continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	111	-	112	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Dichlorvos	mg/kg	0.5	<0.5	-	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	-	<0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	-	<0.2	-
Malathion	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	-
Methidathion	mg/kg	0.5	<0.5	-	<0.5	-

Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	
Methidathion	mg/kg	0.5	<0.5	-	<0.5	
Ethion	mg/kg	0.2	<0.2	-	<0.2	
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	<0.2	
Total OP Pesticides*	mg/kg	1.7	<1.7	-	<1.7	
				-		

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	100	-	104	-
d14-p-terphenyl (Surrogate)	%	-	98	-	100	-

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-
Surrogates						

Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	111	-	112	-

	S	mple Number ample Matrix Sample Date Sample Name	SE189064.009 Soil 07 Feb 2019 BH10_0.2-0.3	SE189064.010 Soil 07 Feb 2019 BH10_0.8-1.0	SE189064.011 Soil 07 Feb 2019 BH12_0.15-0.25	SE189064.012 Soil 07 Feb 2019 BH12_0.5-0.6
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/M	aterials by ICPOES Met	thod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	6	9	7	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.4	<0.3
Chromium, Cr	mg/kg	0.3	9.4	2.4	3.7	5.4
Copper, Cu	mg/kg	0.5	12	8.5	7.8	15
Nickel, Ni	mg/kg	0.5	4.8	2.3	2.0	2.6
	mg/kg	1	12	28	27	8
Lead, Pb			07	46	65	24
Zinc, Zn)19 mg/kg	0.05	37 <0.05	0.10	0.15	<0.05
· · · · · · · · · · · · · · · · · · ·	019 mg/kg		<0.05	0.10	0.15	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury	019 mg/kg					<0.05 8.2
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth)19 mg/kg /2019	0.05	<0.05	0.10	0.15	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As)19 mg/kg /2019 %w/w hod: AN318 Tested: 14/2	0.05	<0.05	0.10	0.15	8.2
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd)19 mg/kg /2019 %w/w hod: AN318 Tested: 14/2 μg/L	0.05 0.5 2/2019 1	<0.05	0.10 11 -	0.15 12 -	8.2
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr)19 mg/kg /2019 %w/w hod: AN318 Tested: 14/2 μg/L μg/L	0.05 0.5 2/2019 1 0.1	<0.05 6.4	0.10 11 - -	0.15 12 - -	8.2 - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg /2019 %w/w hod: AN318 Tested: 14/2 μg/L μg/L μg/L	0.05 0.5 2/2019 1 0.1 1	<0.05 6.4	0.10	0.15 12 - - -	8.2 - - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture	mg/kg /2019 %w/w hod: AN318 Tested: 14/2 μg/L μg/L μg/L μg/L μg/L	0.05 0.5 2/2019 1 0.1 1 1 1	<0.05 6.4	0.10 11 - - - - - - - -	0.15 12 - - - - -	8.2 - - - -

Mercury	mg/L	0.0001	-	-	-	-

	S	mple Number Sample Matrix Sample Date Sample Name	SE189064.013 Soil 07 Feb 2019 DUP 2	SE189064.014 Water 07 Feb 2019 RIN	SE189064.015 Soil 07 Feb 2019 TRIP SPIKE	SE189064.016 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	-	[89%]	<0.1
Toluene	mg/kg	0.1	<0.1	-	[86%]	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	-	[89%]	<0.1
m/p-xylene	mg/kg	0.2	<0.2	-	[89%]	<0.2
o-xylene	mg/kg	0.1	<0.1	-	[89%]	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	-	-	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	75	-	77	78
d4-1,2-dichloroethane (Surrogate)	%	-	84	-	87	83
d8-toluene (Surrogate)	%	-	81	-	82	80
Bromofluorobenzene (Surrogate)	%	-	74	-	78	71
Totals						
Total Xylenes	mg/kg	0.3	<0.3	-	-	<0.3
Total BTEX	mg/kg	0.6	<0.6	-	-	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 14/2/20)19				
TRH C6-C10	mg/kg	25	<25	-	-	<25
TRH C6-C9	mg/kg	20	<20	-	-	<20
Surrogates			I	I		
Dibromofluoromethane (Surrogate)	%	-	75	-	-	78
d4-1,2-dichloroethane (Surrogate)	%	-	84	-	-	83
d8-toluene (Surrogate)	%	-	81	-	-	80
Bromofluorobenzene (Surrogate)	%	-	74	-	-	71
VPH F Bands			·		·	
Benzene (F0)	mg/kg	0.1	<0.1	-	-	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-	-	<25

		nple Number		SE189064.014	SE189064.015	SE189064.016
		ample Matrix Sample Date		Water 07 Feb 2019	Soil 07 Feb 2019	Soil 07 Feb 2019
		ample Name		RIN	TRIP SPIKE	TRIP BLANK
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	3 Tested: 14	4/2/2019				
TRH C10-C14	mg/kg	20	<20	-	-	<20
TRH C15-C28	mg/kg	45	<45	-	-	<45
TRH C29-C36	mg/kg	45	<45	-	-	<45
TRH C37-C40	mg/kg	100	<100	-	-	<100
TRH C10-C36 Total	mg/kg	110	<110	-	-	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	-	-	<210
TRH F Bands	-					
TRH >C10-C16	mg/kg	25	<25	-	-	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	-	-	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	-	-	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	-	-	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	1420 Testeo	d: 14/2/2019)			
Naphthalene	mg/kg	0.1	<0.1	-	-	-
2-methylnaphthalene	mg/kg	0.1	<0.1		-	-
1-methylnaphthalene	mg/kg	0.1	<0.1	_	-	-
Acenaphthylene	mg/kg	0.1	<0.1	_	-	-
Acenaphthene	mg/kg	0.1	<0.1	-	-	-
Fluorene	mg/kg	0.1	<0.1	-	-	-
Phenanthrene	mg/kg	0.1	0.1	_	-	
Anthracene	mg/kg	0.1	<0.1	_	-	
Fluoranthene	mg/kg	0.1	0.2	_	-	
Pyrene		0.1	0.2		-	
Benzo(a)anthracene	mg/kg mg/kg	0.1	<0.1		-	
Chrysene	mg/kg	0.1	<0.1	_	-	
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1		_	
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-	_
Benzo(a)pyrene	mg/kg	0.1	<0.1	_	-	_
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-	-
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-	-
Benzo(ghi)perylene	mg/kg	0.1	<0.1		-	
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-	-
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-	-
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-	-
Total PAH (18)	mg/kg	0.8	<0.8	-	-	-
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	-	-	-
	0.0					
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	96	-	-	_
2-fluorobiphenyl (Surrogate)	%	-	104	-	-	_
d14-p-terphenyl (Surrogate)	%	-	102	-	-	-
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	1					
		<u> </u>				
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-	-
Alpha BHC	mg/kg	0.1	<0.1	-	-	-
Lindane	mg/kg	0.1	<0.1	-	-	-
Heptachlor	mg/kg	0.1	<0.1	-	-	-
Aldrin	mg/kg	0.1	<0.1	-	-	-
Beta BHC	mg/kg	0.1	<0.1	-	-	-
Delta BHC	mg/kg	0.1	<0.1	-	-	-
Heptachlor epoxide	mg/kg	0.1	<0.1	-	-	-
o,p'-DDE	mg/kg	0.1	<0.1	-	-	-
Alpha Endosulfan	mg/kg	0.2	<0.2	-	-	-
Gamma Chlordane	mg/kg	0.1	<0.1	-	-	-
Alpha Chlordane	mg/kg	0.1	<0.1	-	-	-
trans-Nonachlor	mg/kg	0.1	<0.1	-	-	-
p,p'-DDE	mg/kg	0.1	<0.1	-	-	-
Dieldrin	mg/kg	0.2	<0.2	-	-	-
Endrin	mg/kg	0.2	<0.2	-	-	_

SE189064 R0

	5	Sample Number Sample Matrix Sample Date Sample Name	SE189064.013 Soil 07 Feb 2019 DUP 2	SE189064.014 Water 07 Feb 2019 RIN	SE189064.015 Soil 07 Feb 2019 TRIP SPIKE	SE189064.016 Soil 07 Feb 2019 TRIP BLANK
Parameter OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	Units (continued)	LOR				
		0.4	-0.4			
o,p'-DDD	mg/kg	0.1	<0.1	-	-	-
o,p'-DDT Beta Endosulfan	mg/kg	0.1	<0.1	-	-	-
	mg/kg	0.2	<0.2	-	-	-
p,p'-DDD	mg/kg			-	-	-
p,p'-DDT	mg/kg	0.1	<0.1			
Endosulfan sulphate	mg/kg	0.1	<0.1	-	-	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	-	-
Methoxychlor	mg/kg	0.1	<0.1	-	-	-
Endrin Ketone	mg/kg	0.1	<0.1	-	-	-
Isodrin	mg/kg	0.1	<0.1	-	-	-
Mirex	mg/kg	0.1	<0.1	-	-	-
Total CLP OC Pesticides	mg/kg	1	<1	-	-	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105	-	-	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019 Dichlorvos	mg/kg	0.5	<0.5	_	-	
Dimethoate	mg/kg	0.5	<0.5	_	-	
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	_	-	_
Fenitrothion	mg/kg	0.2	<0.2	_	-	_
Malathion	mg/kg	0.2	<0.2	-	-	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	-	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	_	-	
Bromophos Ethyl	mg/kg	0.2	<0.2	_	-	_
Methidathion	mg/kg	0.5	<0.5	_	-	_
Ethion	mg/kg	0.2	<0.2		-	
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	_	-	
Total OP Pesticides*	mg/kg	1.7	<1.7		-	_
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	104	-	-	-
d14-p-terphenyl (Surrogate)	%	-	102	-	-	-
PCBs in Soil Method: AN420 Tested: 14/2/2019						
Arochlor 1016	mg/kg	0.2	<0.2	-	-	-
Arochlor 1221	mg/kg	0.2	<0.2	-	-	-
Arochlor 1232	mg/kg	0.2	<0.2	-	-	-
Arochlor 1242	mg/kg	0.2	<0.2	-	-	-
Arochlor 1248	mg/kg	0.2	<0.2	-	-	-
Arochlor 1254	mg/kg	0.2	<0.2	-	-	-
Arochlor 1260	mg/kg	0.2	<0.2	-	-	-
Arochlor 1262	mg/kg	0.2	<0.2	-	-	-
Arochlor 1268	mg/kg	0.2	<0.2	-	-	-

Surrogates

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105	-	-	-
--	---	---	---	-----	---	---	---

SE189064 R0

	S	nple Number ample Matrix Sample Date sample Name	SE189064.013 Soil 07 Feb 2019 DUP 2	SE189064.014 Water 07 Feb 2019 RIN	SE189064.015 Soil 07 Feb 2019 TRIP SPIKE	SE189064.016 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/Mate	erials by ICPOES Met	hod: AN040/	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	7	-	-	-
Cadmium, Cd	mg/kg	0.3	<0.3	-	-	-
Chromium, Cr	mg/kg	0.3	3.3	-	-	-
Copper, Cu	mg/kg	0.5	6.0	-	-	-
Nickel, Ni	mg/kg	0.5	1.5	-	-	-
Lead, Pb	mg/kg	1	17	-	-	-
Zinc, Zn	mg/kg	2	43	-	-	-
Mercury in Soil Method: AN312 Tested: 14/2/2019						
Mercury	mg/kg	0.05	<0.05	-	-	-
Mercury	mg/kg	0.05	<0.05	-	-	
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method	19 %w/w 1: AN318 Tested: 14/2	0.5	11	-	-	<0.5
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As	mg/kg 19 %w/w 1: AN318 Tested: 14/2 µg/L	0.5	-			
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd	mg/kg 19 %w/w t: AN318 Tested: 14/2 µg/L µg/L	0.5 2/2019 1 0.1	11	- <1 <0.1	-	<0.5
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg 19 %w/w 19 5: AN318 Tested: 14/2 μg/L μg/L μg/L	0.5 2/2019 1 0.1 1	-	- <1 <0.1 <1	-	<0.5
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg 19 %w/w 5: AN318 Tested: 14/2 μg/L μg/L μg/L μg/L μg/L	0.5 2/2019 1 0.1 1 1		- <1 <0.1 <1 <1	- -	<0.5 - - - - -
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg 19 %w/w 5: AN318 Теsted: 14/2 µg/L µg/L µg/L µg/L µg/L µg/L	0.5 2/2019 1 0.1 1 1 1 1		- <1 <0.1 <1 <1 <1 <1 <1	- - - -	<0.5 - - -
Mercury Moisture Content Method: AN002 Tested: 14/2/20 % Moisture Trace Metals (Dissolved) in Water by ICPMS Method Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg 19 %w/w 5: AN318 Tested: 14/2 μg/L μg/L μg/L μg/L μg/L	0.5 2/2019 1 0.1 1 1		- <1 <0.1 <1 <1	- - - -	<0.5 - - - - -

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 15/2/2019

Mercury mg/L 0.001 - <0.0001 -							
	Mercury	mg/L	0.0001	-	<0.0001	-	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery	MS %Recovery
Mercury	LB166839	mg/L	0.0001	<0.0001	90%	75%

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB167085	mg/kg	0.05	<0.05	16%	95%	91%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB167082	%w/w	0.5	7 - 13%

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Hexachlorobenzene (HCB)	LB167081	mg/kg	0.1	<0.1	0%	NA
Alpha BHC	LB167081	mg/kg	0.1	<0.1	0%	NA
Lindane	LB167081	mg/kg	0.1	<0.1	0%	NA
Heptachlor	LB167081	mg/kg	0.1	<0.1	0%	124%
Aldrin	LB167081	mg/kg	0.1	<0.1	0%	125%
Beta BHC	LB167081	mg/kg	0.1	<0.1	0%	NA
Delta BHC	LB167081	mg/kg	0.1	<0.1	0%	113%
Heptachlor epoxide	LB167081	mg/kg	0.1	<0.1	0%	NA
o,p'-DDE	LB167081	mg/kg	0.1	<0.1	0%	NA
Alpha Endosulfan	LB167081	mg/kg	0.2	<0.2	0%	NA
Gamma Chlordane	LB167081	mg/kg	0.1	<0.1	0%	NA
Alpha Chlordane	LB167081	mg/kg	0.1	<0.1	0%	NA
trans-Nonachlor	LB167081	mg/kg	0.1	<0.1	0%	NA
p,p'-DDE	LB167081	mg/kg	0.1	<0.1	0%	NA
Dieldrin	LB167081	mg/kg	0.2	<0.2	0%	124%
Endrin	LB167081	mg/kg	0.2	<0.2	0%	114%
o,p'-DDD	LB167081	mg/kg	0.1	<0.1	0%	NA
o,p'-DDT	LB167081	mg/kg	0.1	<0.1	0%	NA
Beta Endosulfan	LB167081	mg/kg	0.2	<0.2	0%	NA
p,p'-DDD	LB167081	mg/kg	0.1	<0.1	0%	NA
p,p'-DDT	LB167081	mg/kg	0.1	<0.1	0%	108%
Endosulfan sulphate	LB167081	mg/kg	0.1	<0.1	0%	NA
Endrin Aldehyde	LB167081	mg/kg	0.1	<0.1	0%	NA
Methoxychlor	LB167081	mg/kg	0.1	<0.1	0%	NA
Endrin Ketone	LB167081	mg/kg	0.1	<0.1	0%	NA
Isodrin	LB167081	mg/kg	0.1	<0.1	0%	NA
Mirex	LB167081	mg/kg	0.1	<0.1	0%	NA
Total CLP OC Pesticides	LB167081	mg/kg	1	<1	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB167081	%	-	100%	3%	90%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Dichlorvos	LB167081	mg/kg	0.5	<0.5	0%	108%
Dimethoate	LB167081	mg/kg	0.5	<0.5	0%	NA
Diazinon (Dimpylate)	LB167081	mg/kg	0.5	<0.5	0%	105%
Fenitrothion	LB167081	mg/kg	0.2	<0.2	0%	NA
Malathion	LB167081	mg/kg	0.2	<0.2	0%	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB167081	mg/kg	0.2	<0.2	0%	102%
Parathion-ethyl (Parathion)	LB167081	mg/kg	0.2	<0.2	0%	NA
Bromophos Ethyl	LB167081	mg/kg	0.2	<0.2	0%	NA
Methidathion	LB167081	mg/kg	0.5	<0.5	0%	NA
Ethion	LB167081	mg/kg	0.2	<0.2	0%	89%
Azinphos-methyl (Guthion)	LB167081	mg/kg	0.2	<0.2	0%	NA
Total OP Pesticides*	LB167081	mg/kg	1.7	<1.7	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
2-fluorobiphenyl (Surrogate)	LB167081	%	-	106%	2%	98%
d14-p-terphenyl (Surrogate)	LB167081	%	-	102%	4%	94%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB167081	mg/kg	0.1	<0.1	0%	106%	110%
2-methylnaphthalene	LB167081	mg/kg	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB167081	mg/kg	0.1	<0.1	0%	NA	NA
Acenaphthylene	LB167081	mg/kg	0.1	<0.1	0%	117%	118%
Acenaphthene	LB167081	mg/kg	0.1	<0.1	0%	111%	111%
Fluorene	LB167081	mg/kg	0.1	<0.1	0%	NA	NA
Phenanthrene	LB167081	mg/kg	0.1	<0.1	33 - 36%	111%	110%
Anthracene	LB167081	mg/kg	0.1	<0.1	0%	109%	108%
Fluoranthene	LB167081	mg/kg	0.1	<0.1	20 - 24%	104%	105%
Pyrene	LB167081	mg/kg	0.1	<0.1	22 - 26%	101%	102%
Benzo(a)anthracene	LB167081	mg/kg	0.1	<0.1	10 - 43%	NA	NA
Chrysene	LB167081	mg/kg	0.1	<0.1	12 - 43%	NA	NA
Benzo(b&j)fluoranthene	LB167081	mg/kg	0.1	<0.1	13 - 30%	NA	NA
Benzo(k)fluoranthene	LB167081	mg/kg	0.1	<0.1	0 - 14%	NA	NA
Benzo(a)pyrene	LB167081	mg/kg	0.1	<0.1	3 - 40%	114%	99%
Indeno(1,2,3-cd)pyrene	LB167081	mg/kg	0.1	<0.1	15 - 26%	NA	NA
Dibenzo(ah)anthracene	LB167081	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(ghi)perylene	LB167081	mg/kg	0.1	<0.1	10 - 12%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>LB167081</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0 - 9%</td><td>NA</td><td>NA</td></lor=0<>	LB167081	TEQ (mg/kg)	0.2	<0.2	0 - 9%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>LB167081</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0 - 6%</td><td>NA</td><td>NA</td></lor=lor<>	LB167081	TEQ (mg/kg)	0.3	<0.3	0 - 6%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>LB167081</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0 - 29%</td><td>NA</td><td>NA</td></lor=lor>	LB167081	TEQ (mg/kg)	0.2	<0.2	0 - 29%	NA	NA
Total PAH (18)	LB167081	mg/kg	0.8	<0.8	13 - 43%	NA	NA
Total PAH (NEPM/WHO 16)	LB167081	mg/kg	0.8	<0.8			

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d5-nitrobenzene (Surrogate)	LB167081	%	-	98%	0 - 2%	94%	94%
2-fluorobiphenyl (Surrogate)	LB167081	%	-	106%	0 - 2%	98%	102%
d14-p-terphenyl (Surrogate)	LB167081	%	-	102%	0 - 4%	94%	96%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Arochlor 1016	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1221	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1232	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1242	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1248	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1254	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1260	LB167081	mg/kg	0.2	<0.2	0%	102%
Arochlor 1262	LB167081	mg/kg	0.2	<0.2	0%	NA
Arochlor 1268	LB167081	mg/kg	0.2	<0.2	0%	NA
Total PCBs (Arochlors)	LB167081	mg/kg	1	<1	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB167081	%	-	100%	3%	99%

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB167083	mg/kg	1	<1	13%	98%	88%
Cadmium, Cd	LB167083	mg/kg	0.3	<0.3	0%	98%	94%
Chromium, Cr	LB167083	mg/kg	0.3	<0.3	0%	95%	93%
Copper, Cu	LB167083	mg/kg	0.5	<0.5	2%	86%	97%
Nickel, Ni	LB167083	mg/kg	0.5	<0.5	8%	86%	92%
Lead, Pb	LB167083	mg/kg	1	<1	5%	84%	92%
Zinc, Zn	LB167083	mg/kg	2	<2.0	1%	91%	95%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Arsenic, As	LB166853	µg/L	1	<1	91%	96%
Cadmium, Cd	LB166853	µg/L	0.1	<0.1	106%	105%
Chromium, Cr	LB166853	µg/L	1	<1	112%	106%
Copper, Cu	LB166853	µg/L	1	<1	115%	105%
Lead, Pb	LB166853	µg/L	1	<1	104%	99%
Nickel, Ni	LB166853	µg/L	1	<1	109%	99%
Zinc, Zn	LB166853	µg/L	5	<5	110%	109%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB167081	mg/kg	20	<20	0%	98%	118%
TRH C15-C28	LB167081	mg/kg	45	<45	0 - 13%	98%	133%
TRH C29-C36	LB167081	mg/kg	45	<45	0%	103%	103%
TRH C37-C40	LB167081	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB167081	mg/kg	110	<110	0%	NA	NA
TRH C10-C40 Total (F bands)	LB167081	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16	LB167081	mg/kg	25	<25	0%	98%	118%
TRH >C10-C16 - Naphthalene (F2)	LB167081	mg/kg	25	<25	0%	NA	NA
TRH >C16-C34 (F3)	LB167081	mg/kg	90	<90	0%	100%	133%
TRH >C34-C40 (F4)	LB167081	mg/kg	120	<120	0%	110%	NA

VOC's in Soil Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene	LB167080	mg/kg	0.1	<0.1	0%	81%	80%
Toluene	LB167080	mg/kg	0.1	<0.1	0%	81%	78%
Ethylbenzene	LB167080	mg/kg	0.1	<0.1	0%	80%	82%
m/p-xylene	LB167080	mg/kg	0.2	<0.2	0%	83%	87%
o-xylene	LB167080	mg/kg	0.1	<0.1	0%	81%	84%

Polycyclic VOCs

Parameter	QC Units LOR			MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB167080	mg/kg	0.1	<0.1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB167080	%	-	80%	2 - 6%	79%	83%
d4-1,2-dichloroethane (Surrogate)	LB167080	%	-	90%	2 - 9%	90%	84%
d8-toluene (Surrogate)	LB167080	%	-	86%	1 - 7%	87%	86%
Bromofluorobenzene (Surrogate)	LB167080	%	-	79%	0 - 4%	87%	89%

Totals

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Xylenes	LB167080	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX	LB167080	mg/kg	0.6	<0.6	0%	NA	NA

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB167080	mg/kg	25	<25	0%	88%	90%
TRH C6-C9	LB167080	mg/kg	20	<20	0%	83%	86%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB167080	%	-	80%	2 - 6%	79%	83%
d4-1,2-dichloroethane (Surrogate)	LB167080	%	-	90%	2 - 9%	90%	84%
d8-toluene (Surrogate)	LB167080	%	-	86%	1 - 7%	87%	86%
Bromofluorobenzene (Surrogate)	LB167080	%	-	79%	0 - 4%	87%	89%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB167080	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB167080	mg/kg	25	<25	0%	102%	106%

METHOD SUMMARY

- METHOD	- METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

METHOD SUMMARY

- METHOD -AN433

METHODOLOGY SUMMARY

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte NVL Not Validated
 - VL Not validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

Contact	Jake Duck	Manager	Huong Crawford
Client	VALLEY CIVILAB PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 3127 THORNTON NSW 2322	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4966 1844	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jake.duck@vclab.com.au	Email	au.environmental.sydney@sgs.com
Project	P1677-KOTARA	SGS Reference	SE189064 R0
Order Number	03934	Date Received	11 Feb 2019
Samples	16	Date Reported	18 Feb 2019

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes SGS Yes 11/2/2019 Yes 8.7°C Standard

Unit 16 33 Maddox St

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 15 Soil 1 Water COC Yes Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wa	ter						Method: ME-(AU)-[ENV]AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RIN	SE189064.014	LB166839	07 Feb 2019	11 Feb 2019	07 Mar 2019	13 Feb 2019	07 Mar 2019	15 Feb 2019
Mercury in Soil							Mothodul	ME-(AU)-[ENV]AN312
-	O smalls N s	00 8-6	0	Dessived	Estre-tion Due	Estus et al		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH3_0.15-0.25 BH3_0.8-0.9	SE189064.005 SE189064.006	LB167085 LB167085	07 Feb 2019	11 Feb 2019 11 Feb 2019	07 Mar 2019 07 Mar 2019	14 Feb 2019	07 Mar 2019 07 Mar 2019	18 Feb 2019
		LB167085	07 Feb 2019			14 Feb 2019		18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167085	07 Feb 2019 07 Feb 2019	11 Feb 2019 11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH9_0.7-0.8 BH10_0.2-0.3	SE189064.008 SE189064.009	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019 07 Mar 2019	14 Feb 2019 14 Feb 2019	07 Mar 2019 07 Mar 2019	18 Feb 2019 18 Feb 2019
BH10_0.8-1.0 BH12_0.15-0.25	SE189064.010 SE189064.011	LB167085 LB167085	07 Feb 2019 07 Feb 2019	11 Feb 2019 11 Feb 2019	07 Mar 2019 07 Mar 2019	14 Feb 2019 14 Feb 2019	07 Mar 2019 07 Mar 2019	18 Feb 2019 18 Feb 2019
	SE189064.011	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
BH12_0.5-0.6								
DUP 2	SE189064.013	LB167085	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 2019
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH9_0.7-0.8	SE189064.008	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
DUP 2	SE189064.013	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
TRIP BLANK	SE189064.016	LB167082	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 2019
OC Pesticides in Soil							Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.7-0.8	SE189064.008	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 2	SE189064.013	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189064.016	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
	32.30004.007	20.01001	5552010		2552010		20	.0.002010

Mothod: ME (ALD JEND/JANI420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continued)

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN4								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH9_0.7-0.8	SE189064.008	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 2	SE189064.013	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189064.016	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

· · ·								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.7-0.8	SE189064.008	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 2	SE189064.013	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189064.016	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

PCBs in Soli							Method: ME-(AU)-[ENV]AN4	
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH9_0.7-0.8	SE189064.008	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 2	SE189064.013	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189064.016	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN3)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1_0.15-0.25	SE189064.001	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH1_0.4-0.5	SE189064.002	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH2_0.15-0.25	SE189064.003	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH2_0.8-0.9	SE189064.004	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH3_0.15-0.25	SE189064.005	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH3_0.8-0.9	SE189064.006	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH9_0.25-0.35	SE189064.007	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH9_0.7-0.8	SE189064.008	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH10_0.2-0.3	SE189064.009	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH10_0.8-1.0	SE189064.010	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH12_0.15-0.25	SE189064.011	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH12_0.5-0.6	SE189064.012	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
DUP 2	SE189064.013	LB167083	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
Trace Metals (Dissolved) in Water by ICPMS							Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RIN	SE189064.014	LB166853	07 Feb 2019	11 Feb 2019	06 Aug 2019	13 Feb 2019	06 Aug 2019	13 Feb 2019

Method: ME-(AU)-[ENV]AN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil

Sample Name Sample Name Oc Ref Bample M Received Extraction Duty Extracted Analysed Duty Analysed Duty BH1_01562 SET10064.020 LINF0701 0.7 Feb.2019 11 Feb.2019 11 Feb.2019 21 Feb.2019 11 Feb.2019 20 Me.2019 11 Feb.20									
Ph1 0.4 0.3 BE HUNDE 4022 BE HUNDE 4024 BE HUNDE 4	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
bp2.05.023StrondsdoddUP rb 201011 Frb 201021 Frb 201941 Frb 201020 Mar 201019 Frb 2010BP0.05.023StrondsdoddUP rb 2010UT Frb 2010UT Frb 201021 Frb 201941 Frb 201020 Mar 201019 Frb 2010BP0.05.023StrondsdoddUP rb 2010UT Frb 2010UT Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP0.05.03StrondsdoddUP rb 2010UT Frb 2010UT Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP0.05.03StrondsdoddUP rb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP1.05.05StrondsdoddUP rb 2010UT Frb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP1.25.05StrondsdoddUP rb 2010UT Frb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP2.25StrondsdoddUP rb 2010UT Frb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP2.25StrondsdoddUP rb 2010UT Frb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 Mar 201019 Frb 2010BP2.25StrondsdoddUP rb 2010UT Frb 2010UT Frb 2010UT Frb 2010UT Frb 201011 Frb 201021 Frb 201041 Frb 201020 M	BH1_0.15-0.25	SE189064.001	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
SP2.8.0.0 SE18904.00 LB10701 Of Fe.2019 11 Fe.2019 21 Fe.2010 14 Fe.2019 28 Mur 2019 11 Fe.2019 B10.4.0.0.0 SE18904.000 LB10701 Of Fe.2019 11 Fe.2019 21 Fe.2010 14 Fe.2019 28 Mur 2019 11 Fe.2019 B10.4.0.0.0 SE18904.000 LB10701 Of Fe.2019 11 Fe.2019 21 Fe.2010 14 Fe.2019 28 Mur 2014 11 Fe.2019 B10.9.2.0.1.0.0 SE18904.000 LB10701 Of Fe.2019 11 Fe.2019 21 Fe.2016 14 Fe.2019 28 Mur 2014 15 Fe.2019 B110.2.0.1.0 SE18904.011 LB10701 Of Fe.2019 11 Fe.219 21 Fe.2016 14 Fe.2019 28 Mur 2014 15 Fe.2019 B112.0.1.6.1.0 SE18904.011 LB10701 Of Fe.2019 11 Fe.219 21 Fe.2019 14 Fe.2019 28 Mur 2014 15 Fe.2019 B112.0.1.6.1.0 SE18904.011 LB10701 Of Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 28 Mur 2014 15 Fe.2019 B112.0.1.6.1.0 SE18904.011 LB10708 Of Fe.2019 11 Fe.	BH1_0.4-0.5	SE189064.002	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
Bin D. 10 202 SENSORADE LD10701 O'F e.2019 11 Fe 2019 21 Fe 2010 14 Fe 2019 20 May 2019 (15 Fe 2019) Bin D. 20.A02 SENSORADE LB10701 O'F e.2019 11 Fe 2019 21 Fe 2010 44 Fe 2019 20 May 2019 11 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F e.2019 11 Fe 2019 21 Fe 2010 44 Fe 2019 20 May 2019 11 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F e.2019 11 Fe 2019 21 Fe 2019 44 Fe 2019 20 May 2019 16 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F e.2019 11 Fe 2019 21 Fe 2019 41 Fe 2019 20 May 2019 16 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F e.2019 11 Fe 2019 21 Fe 2019 41 Fe 2019 20 May 2019 16 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F Fe 2019 11 Fe 2019 21 Fe 2019 41 Fe 2019 20 May 2019 16 Fe 2019 Bin D. 20.A02 SENSORADE LB10701 O'F Fe 2019 11 Fe 2019 21 Fe 2019 41 Fe 2019 20 May 2019 16 Fe 2019 <t< td=""><td>BH2_0.15-0.25</td><td>SE189064.003</td><td>LB167081</td><td>07 Feb 2019</td><td>11 Feb 2019</td><td>21 Feb 2019</td><td>14 Feb 2019</td><td>26 Mar 2019</td><td>18 Feb 2019</td></t<>	BH2_0.15-0.25	SE189064.003	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BHD_0.6.0.9 SE18904.00 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 14 Fe2.209 20 Mar.201 15 Fe0.219 BHD_0.26.3.0 SE18904.000 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 44 Fe2.219 20 Mar.201 15 Fe0.219 BHD_0.26.3.0 SE18904.010 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 44 Fe2.219 28 Mar.201 16 Fe2.219 BHD_0.26.3.0 SE18904.010 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 41 Fe2.219 28 Mar.201 16 Fe2.219 BHD_0.26.3.0 SE18904.010 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 41 Fe2.219 28 Mar.201 16 Fe2.219 DUT_2 SE18904.010 LB10701 Of Fe2.219 11 Fe2.219 21 Fe2.210 41 Fe2.219 28 Mar.201 16 Fe2.219 DUT_2 SE18904.030 LB10700 Of Fe2.219 11 Fe2.219 21 Fe2.210 41 Fe2.219 28 Mar.201 16 Fe2.219 DUT_2 SE18904.030 LB10700 Of Fe2.219 11 Fe2.219 21 Fe2.21	BH2_0.8-0.9	SE189064.004	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
Bit 0.2.0.3.6 SETBODALOP LB ATOMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 24 Me.2019 18 Fe.2019 Bit 0.2.0.3 SETBODALOM LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 24 Me.2018 18 Fe.2019 Bit 0.2.0.3 SETBODALOM LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 24 Me.2018 18 Fe.2019 Bit 2.0.5.0 SETBODALOT LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 24 Me.2018 18 Fe.2019 Bit 2.0.5.0 SETBODALOT LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2019 24 Me.2018 24 Me.2018 18 Fe.2019 VCC is Indi SETBODALOT LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2018 24 Me.2018 24 Me.2018 24 Me.2018 24 Me.2019 16 Fe.2019 PL 1.0.5.0.2 SETBODALOT LB IGTMI OF Fe.2019 11 Fe.2019 21 Fe.2019 14 Fe.2018 24 Me.2018 24 Me.2018 24 Me.2018 24 Me.201	BH3_0.15-0.25	SE189064.005	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
Bit Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontr< td=""><td>BH3_0.8-0.9</td><td>SE189064.006</td><td>LB167081</td><td>07 Feb 2019</td><td>11 Feb 2019</td><td>21 Feb 2019</td><td>14 Feb 2019</td><td>26 Mar 2019</td><td>18 Feb 2019</td></thcontr<></thcontrol<></thcontrol<>	BH3_0.8-0.9	SE189064.006	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10.20.30 BE18002.400 LE167081 OT Feb209 H1 Feb209 21 Feb209 H4 Feb209 28 Mar2010 18 Feb209 BH10.0 L61 SE18004.011 LE167081 OT Feb209 11 Feb209 21 Feb209 14 Feb209 28 Mar2019 18 Feb209 BH12.8 SC43 SE18004.012 LE167081 OT Feb209 11 Feb209 21 Feb209 14 Feb209 28 Mar2019 18 Feb209 DLP 2 SE18004.012 LE167081 OT Feb209 11 Feb209 21 Feb209 14 Feb209 28 Mar2019 18 Feb209 CVC In Sol SE18004.001 LE16708 OT Feb209 11 Feb209 21 Feb209 44 Feb209 28 Mar2019 18 Feb209 BH10.452 SE18004.002 LE16708 OT Feb209 11 Feb209 21 Feb209 44 Feb209 28 Mar2019 18 Feb209 BH2.0452 SE18004.002 LE16708 OT Feb209 11 Feb209 21 Feb209 28 Mar2019 18 Feb209 BH2.0452 SE18004.002 LE16708 OT Feb209 11 Feb209 21 Feb209 28 Mar2019 18 Feb209	BH9_0.25-0.35	SE189064.007	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH10 SET MODALA10 LB1470214 D7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 BH12.0.50.6 SET MODALA12 LB147081 O7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 DUP 2 SET MODALA12 LB147081 O7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 DUP 2 SET MODALA12 LB147081 O7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 DVDC SET MODALA01 LB147080 O7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 BH10_164.25 SET MODALA01 LB147080 O7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mer 2019 18 Feb 2019 BH2_0.45.0 SET MODALA01 LB147080 O7 Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 28 Mer 2019 18 Feb 2019 BH2_0.45.0 SET MODALA001 LB147080 O7 Feb 2019	BH9_0.7-0.8	SE189064.008	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
SH12, 0.5-0.2 SE 16906.4 01 L 161708 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 2019 18 Feb 2019 DUP 2 SE 18906.4 0.13 L 1617081 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 2019 18 Feb 2019 DUP 2 SE 18906.4 0.13 L 1617081 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 2019 18 Feb 2019 CYCE In SOL SE 189064.002 L 1617000 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 2019 18 Feb 2019 BH1 0.540.25 SE 189064.002 L 1617000 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 2019 18 Feb 2019 BH2 0.540.5 SE 189064.002 L 1617000 OT Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Med 201 18 Feb 2019 BH2 0.540.5 SE 189064.002 L 1617000 OT Feb 2019 11 Feb 2019 21 Feb 2019 24 Feb 2019 28 Med 201 18 Feb 2019 BH2 0.540.5 SE 189064.001 L 1617000 </td <td>BH10_0.2-0.3</td> <td>SE189064.009</td> <td>LB167081</td> <td>07 Feb 2019</td> <td>11 Feb 2019</td> <td>21 Feb 2019</td> <td>14 Feb 2019</td> <td>26 Mar 2019</td> <td>18 Feb 2019</td>	BH10_0.2-0.3	SE189064.009	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH12_06.06 SE 68006.072 LB 670781 O 7 Feb 2019 11 Feb 2019 21 Feb 2019 24 Mar 2019 18 Feb 2019 TNP BLANK SE 180064.013 LB 670781 O 7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 VCCs in Soll Sample Name Sample No O 7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 Sample Name Sample O O 7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.15-0.25 SE180064.00 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE180064.00 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 BH3_0.8-0.3 SE180064.00 LB 1670780 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3_0.0-0.3 SE180064.001 LB 1670780 07 Feb 2019 11	BH10_0.8-1.0	SE189064.010	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DIP2 SE 880064.015 L B107081 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 20 Mar 2019 11 Feb 2019 TNP BLANK SE 189004.016 L B107081 07 Feb 2019 11 Feb 2019 21 Feb 2019 20 Mar 2019 18 Feb 2019 CYC's In SOL Sample Monto OC Ref Sample Monto OC Ref Sample Monto Analysis Duo Analysis Duo<	BH12_0.15-0.25	SE189064.011	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK SE 19804.016 LB 197081 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 10 Feb 2019 VOC in Sol Sample Name Sample	BH12_0.5-0.6	SE189064.012	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
OCC In EGI Description Description Description Analysis Due	DUP 2	SE189064.013	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
Sample Name Sample No. QC Ref Sampled Recolved Extraction Due Extracted Analysed BH1.0.6-0.5 SE189064.001 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 23 Mar 2019 18 Feb 2019 BH2.0.6-0.5 SE189064.003 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 24 Mar 2019 28 Mar 2019 18 Feb 2019 BH2.0.6-0.3 SE189064.004 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3.0.6-0.25 SE189064.006 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 28 Mar 2019 18 Feb 2019 BH9.0.25.0.3 SE189064.006 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 BH9.0.25.0.3 SE189064.003 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 BH9.0.25.0 SE189064.011 LB157080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 <td>TRIP BLANK</td> <td>SE189064.016</td> <td>LB167081</td> <td>07 Feb 2019</td> <td>11 Feb 2019</td> <td>21 Feb 2019</td> <td>14 Feb 2019</td> <td>26 Mar 2019</td> <td>18 Feb 2019</td>	TRIP BLANK	SE189064.016	LB167081	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH1_0.15-0.25 SE 189064.001 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.4-0.5 SE 189064.002 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.05-0.25 SE 189064.005 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.05-0.25 SE 189064.000 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.05-0.3 SE 189064.000 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.02-0.3 SE 189064.010 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.02-0.5 SE 189064.013 <td>VOC's in Soil</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Method: I</td> <td>ME-(AU)-[ENV]AN433</td>	VOC's in Soil							Method: I	ME-(AU)-[ENV]AN433
BH1_0.15-0.25 SE 189064.001 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.4-0.5 SE 189064.002 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.05-0.25 SE 189064.005 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.05-0.25 SE 189064.000 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.05-0.3 SE 189064.000 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.02-0.3 SE 189064.010 LB 167080 O'T Feb 2019 11 Feb 2019 21 Feb 2019 44 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.02-0.5 SE 189064.013 <td>Sample Name</td> <td>Sample No.</td> <td>QC Ref</td> <td>Sampled</td> <td>Received</td> <td>Extraction Due</td> <td>Extracted</td> <td>Analysis Due</td> <td>Analysed</td>	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH1.0.4-0.5 SE 189064.002 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH2.0.16-0.25 SE 189064.003 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3.0.16-0.25 SE 189064.005 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3.0.6-0.3 SE 189064.005 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH9.0.25-0.35 SE 189064.005 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH0.0.2-0.3 SE 189064.010 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH10.0.2-0.5 SE 189064.011 L B167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12.0.5-0.25 SE 189064.016		•							
BH2_0.15-0.25 SE 180064.003 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH2_0.50.25 SE 180064.004 LB167080 0.7 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3_0.50.25 SE 180064.005 LB167080 0.7 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3_0.50.25 SE 180064.005 LB167080 0.7 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH9_0.7-0.8 SE 180064.007 LB167080 0.7 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.4-0.3 SE 180064.010 LB167080 0.7 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.5-0.4 SE 180064.012 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.5-0.4 SE 180064.012 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 <									
BH2,08-0.9 SE 189084.004 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3,0.5-0.25 SE 189064.005 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH3,0.5-0.35 SE 189064.007 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH0,0.2-0.3 SE 189064.000 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH10,0.2-3 SE 189064.010 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH10,0.2-5 SE 189064.011 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 DLP 2 SE 189064.015 LB167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 DLP 2 SE 189064.016 LB167080									
BH3_0.15-0.25 SE 189064.005 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.04-0 SE 189064.006 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH9_0.05-0.35 SE 189064.006 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH0_0.25-0.3 SE 189064.006 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH10_0.8-1.0 SE 189064.011 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.5-0.6 SE 189064.013 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 DIP 2 SE 189064.015 L B167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP BLANK SE 189064.015 L B167080 07 Feb 2019 11 Feb 2019 21 Feb									
BH3_0.8-0.9 SE 189064.006 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH9_0.256.35 SE 189064.007 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.26.3 SE 189064.009 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.8-1.0 SE 189064.009 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.8-1.0 SE 189064.012 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0.0.8-0.6 SE 189064.012 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 24 Mar 2019 28 Mar 2019 18 Feb 2019 DUP 2 SE 189064.015 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 24 Mar 2019 28 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.002 <									
BH9_0.25-0.35 SE 189064.007 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH9_0.25-0.35 SE 189064.008 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0_0.2-0.3 SE 189064.001 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0_0.1-0 SE 189064.011 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH1_0_0.15-0.25 SE 189064.013 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 DLP 2 SE 189064.015 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.015 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 Volatile Petroteum Hydrocarbons Samp									
BH9_0.7-0.8 SE 189064.009 LB167060 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 28 Mar 2019 18 Feb 2019 BH10_0.2-0.3 SE 189064.009 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 BH10_0.8-10 SE 189064.011 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 BH12_0.15-0.25 SE 189064.012 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 24 Feb 2019 28 Mar 2019 18 Feb 2019 DUP 2 SE 189064.012 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.016 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 TRN SPIKE SE 189064.016 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 28 Mar 2019 18 Feb 2019 Vottile Sample No. QC Ref Sample No. QC Ref Sample No. No Reclou/									
BH10_0.2-0.3 SE 189064.009 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH10_0.2-0.3 SE 189064.010 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.5-0.6 SE 189064.012 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.013 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.015 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Voidtle Petroleum Hydrocarbors In Soil March 108 DB 7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysis Due Analysis Due Analysis Due Di 18 Feb 2019 11 Feb									
BH10_0.8-1.0 SE 189064.010 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.15-0.25 SE 189064.011 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.5-0.6 SE 189064.013 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.015 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.016 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Voisitie Set 189064.016 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.15-0.25 SE 189064.001 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
BH12_0.15-0.25 SE 189064.011 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.15-0.6 SE 189064.012 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.013 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.016 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Volatile Petroleum Hydrocarbons In Sol Set 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Sample Name Sample No. CC Rof Sample 0 Received Extraction Due Extracted Analysed BH1_0.15-0.25 SE 189064.002 LB 167080 07 Feb 2019 11 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.45-0.25 SE 189064.003 LB 167080 07 Feb 2019									
BH12_0.5-0.6 SE 189064.012 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.013 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.016 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Volatile Petroleum Hydrocarbons In Solt SE 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Volatile Petroleum Hydrocarbons In Solt SE 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.15-0.25 SE 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.8-0.9 SE 189064.003 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.8-0.9									
DUP 2 SE 189064.013 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.015 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Voiati SE 189064.016 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Voiati Definition Set 189064.016 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.15.0.25 SE 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.15.0.25 SE 189064.002 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15.0.25 SE 189064.004 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8.0.9 SE 189064.005 LB 167080									
TRIP SPIKE SE 189064.015 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP BLANK SE 189064.016 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Volatile Petroleum Hydrocarbons In Soll Method: ME-(AU)-[ENV]AN432 Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1_0.4-0.5 SE 189064.001 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.15-0.25 SE 189064.006 LB 167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 F									
TRIP BLANK SE 189064.016 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 Volatile Petroleum Hydrocarbons In Soil Method: IME-(ALI)-[ENV]AN43: Sample Name Sample No. QC Ref Sampled Roceived Extraction Due Extracted Analysis Due Analysed BH1_0.15-0.25 SE 189064.001 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.002 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE 189064.003 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8-0.9 SE 189064.004 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8-0.9 SE 189064.005 LB 167080 0.7 Feb 2019 11 Feb 2019 21 Feb 2019 26 Mar 2019 18 Feb 20									
Volatile Petroleum Hydrocarbons in Soil Method: KIE-(AU)-[ENV]AN43: Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH1_0.15-0.25 SE189064.001 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH1_0.4-0.5 SE189064.002 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH2_0.15-0.25 SE189064.003 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8-0.9 SE189064.004 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8-0.9 SE189064.006 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH3_0.8-0.9 SE189064.006 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019<									
Sample NameSample No.QC RefSampledReceivedExtraction DueExtractedAnalysis DueAnalysedBH1_0.15-0.25SE189064.001LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH1_0.4-0.5SE189064.002LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.15-0.25SE189064.003LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.8-0.9SE189064.004LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.15-0.25SE189064.005LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.8-0.9SE189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH1_0.2-0.3SE189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH1_0.2-0.5SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.7-0.3SE189064.003LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2									
BH1_0.15-0.25SE 189064.001LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH1_0.4-0.5SE 189064.002LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.15-0.25SE 189064.003LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.8-0.9SE 189064.004LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.15-0.25SE 189064.005LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.8-0.9SE 189064.006LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.25-0.35SE 189064.007LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE 189064.008LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE 189064.003LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.5SE 189064.010LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE 189064.010LB 16708007 Feb 201911 Feb 201921 Feb 201914 Feb 20			OC Pof	Sampled	Pocoivod	Extraction Duo	Extracted		
BH10.4-0.5SE189064.002LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH20.15-0.25SE189064.003LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH20.8-0.9SE189064.004LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH30.15-0.25SE189064.005LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH30.8-0.9SE189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH90.25-0.35SE189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH90.7-0.8SE189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH100.2-0.3SE189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH100.8-1.0SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH100.8-1.0SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH120.5-0.6SE189064.011LB16708007 F									-
BH2_0.15-0.25SE189064.003LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH2_0.8-0.9SE189064.004LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.15-0.25SE189064.005LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.8-0.9SE189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.25-0.35SE189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 2019									
BH2 0.8-0.9SE 189064.004LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3 0.15-0.25SE 189064.005LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3 0.8-0.9SE 189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9 0.25-0.35SE 189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9 0.7-0.8SE 189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10 0.2-0.3SE 189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10 0.2-0.3SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10 0.2-0.3SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10 0.2-0.3SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10 0.2-0.3SE 189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12 0.5-0.6SE 189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 20192									
BH3_0.15-0.25SE 189064.005LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH3_0.8-0.9SE 189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.25-0.35SE 189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE 189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE 189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE 189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE 189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 2019 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BH3_0.8-0.9SE 189064.006LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.25-0.35SE 189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE 189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE 189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE 189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE 189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918									
BH9_0.25-0.35SE189064.007LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH9_0.7-0.8SE189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 20				·					
BH9_0.7-0.8SE189064.008LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.2-0.3SE189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019									
BH10_0.2-0.3SE 189064.009LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH10_0.8-1.0SE 189064.010LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.15-0.25SE 189064.011LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019BH12_0.5-0.6SE 189064.012LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.013LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019DUP 2SE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019TRIP SPIKESE 189064.015LB16708007 Feb 201911 Feb 201921 Feb 201914 Feb 201926 Mar 201918 Feb 2019									
BH10_0.8-1.0 SE189064.010 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.15-0.25 SE189064.011 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.5-0.6 SE189064.012 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE189064.013 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE189064.013 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
BH12_0.15-0.25 SE189064.011 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 BH12_0.5-0.6 SE189064.012 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE189064.013 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
BH12_0.5-0.6 SE 189064.012 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 DUP 2 SE 189064.013 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE 189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
DUP 2 SE189064.013 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019 TRIP SPIKE SE189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
TRIP SPIKE SE189064.015 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
IRIP BLANK SE189064.016 LB167080 07 Feb 2019 11 Feb 2019 21 Feb 2019 14 Feb 2019 26 Mar 2019 18 Feb 2019									
	TRIP BLANK	SE189064.016	LB167080	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: MI	e-(au)-[env]a
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	103
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	107
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	102
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	102
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	111
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	112
	DUP 2	SE189064.013	%	60 - 130%	105
P Pesticides in Soil				Method: MI	e-(au)-[env]a
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	102
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	102
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	106
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	96
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	100
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	104
	DUP 2	SE189064.013	%	60 - 130%	104
114-p-terphenyl (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	100
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	100
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	104
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	96
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	98
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	100
	DUP 2	SE189064.013	%	60 - 130%	102
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: MI	e-(au)-[env]
arameter	Sample Name	Sample Number	Units	Criteria	Recover
-fluorobiphenyl (Surrogate)	BH1_0.15-0.25	SE189064.001	%	70 - 130%	102
	BH1_0.4-0.5	SE189064.002	%	70 - 130%	104
	BH2_0.15-0.25	SE189064.003	%	70 - 130%	102
	BH2_0.8-0.9	SE189064.004	%	70 - 130%	94
	BH3_0.15-0.25	SE189064.005	%	70 - 130%	106
	BH3_0.8-0.9	SE189064.006	%	70 - 130%	102
	BH9_0.25-0.35	SE189064.007	%	70 - 130%	96
	BH9_0.7-0.8	SE189064.008	%	70 - 130%	98
	BH10_0.2-0.3	SE189064.009	%	70 - 130%	100
	BH10_0.8-1.0	SE189064.010	%	70 - 130%	100
	BH12_0.15-0.25	SE189064.011	%	70 - 130%	104
	BH12_0.5-0.6	SE189064.012	%	70 - 130%	102
	DUP 2	SE189064.013	%	70 - 130%	104
14-p-terphenyl (Surrogate)	BH1_0.15-0.25	SE189064.001	%	70 - 130%	100
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5	SE189064.001 SE189064.002	%	70 - 130% 70 - 130%	100 98
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25	SE189064.001 SE189064.002 SE189064.003	% % %	70 - 130% 70 - 130% 70 - 130%	100 98 100
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9	SE189064.001 SE189064.002 SE189064.003 SE189064.004	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92 104 100
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007	% % % % 	70 - 130% 70 - 130%	100 98 100 92 104 100 96
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35 BH9_0.7-0.8	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008	% % % % %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35 BH9_0.7-0.8 BH10_0.2-0.3	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35 BH9_0.7-0.8 BH10_0.2-0.3 BH10_0.8-1.0	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35 BH9_0.7-0.8 BH10_0.2-0.3 BH10_0.8-1.0 BH12_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98
14-p-terphenyl (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.8-1.0 BH12_0.15-0.25 BH12_0.5-0.6	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012	% % % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 98 100
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH2_0.8-0.9 BH3_0.15-0.25 BH3_0.8-0.9 BH9_0.25-0.35 BH9_0.7-0.8 BH10_0.2-0.3 BH10_0.2-0.3 BH10_0.2-0.3 BH10_0.2-0.5 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013	% % % % % % % % %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 100 100
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2 BH1_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.001	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 100 100 102 94
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.8-1.0 BH12_0.15-0.25 BH10_0.2-0.3 BH10_0.2-0.3 BH10_0.2-0.5 BH12_0.15-0.25 BH12_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.001 SE189064.001 SE189064.001	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 100 100 100 102 94 92
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.2-0.3 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.001 SE189064.002 SE189064.002 SE189064.003	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 100 100 100 100 94 92 96
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.2-0.3 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2 BH1_0.15-0.25 BH2_0.15-0.25 BH2_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.013 SE189064.001 SE189064.002 SE189064.003 SE189064.003	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 98 98 100 100 100 100 102 94 92 96 92
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.2-0.3 BH12_0.15-0.25 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2 BH1_0.15-0.25 BH2_0.15-0.25 BH3_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.013 SE189064.001 SE189064.003 SE189064.003 SE189064.003 SE189064.003 SE189064.003 SE189064.004 SE189064.005	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 98 98 100 100 100 102 94 92 94
114-p-terphenyl (Surrogate) 15-nitrobenzene (Surrogate)	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.2-0.3 BH12_0.15-0.25 BH2_0.5-0.6 DUP 2 BH1_0.15-0.25 BH2_0.15-0.25 BH2_0.15-0.25 BH1_0.15-0.25 BH2_0.15-0.25 BH2_0.15-0.25 BH2_0.15-0.25 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.015-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.001 SE189064.001 SE189064.001 SE189064.001 SE189064.001 SE189064.001 SE189064.001 SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.005 SE189064.006	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 98 100 100 100 102 94 94 92 96 92 94
	BH1_0.15-0.25 BH1_0.4-0.5 BH2_0.15-0.25 BH3_0.15-0.25 BH3_0.25-0.35 BH9_0.25-0.35 BH10_0.2-0.3 BH10_0.2-0.3 BH12_0.15-0.25 BH12_0.15-0.25 BH12_0.5-0.6 DUP 2 BH1_0.15-0.25 BH2_0.15-0.25 BH3_0.15-0.25	SE189064.001 SE189064.002 SE189064.003 SE189064.004 SE189064.005 SE189064.006 SE189064.007 SE189064.008 SE189064.009 SE189064.010 SE189064.011 SE189064.012 SE189064.013 SE189064.013 SE189064.001 SE189064.003 SE189064.003 SE189064.003 SE189064.003 SE189064.003 SE189064.004 SE189064.005	% %	70 - 130% 70 - 130%	100 98 100 92 104 100 96 98 98 98 98 98 98 100 100 100 102 94 92 94

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)					(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d5-nitrobenzene (Surrogate)	BH10_0.8-1.0	SE189064.010	%	70 - 130%	84
	BH12_0.15-0.25	SE189064.011	%	70 - 130%	96
	BH12_0.5-0.6	SE189064.012	%	70 - 130%	94
	DUP 2	SE189064.013	%	70 - 130%	96
CBs in Soil				Method: ME-	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	103
, , , , , , , , , , , , , , , , , , ,	BH2_0.15-0.25	SE189064.003	%	60 - 130%	107
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	102
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	102
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	111
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	112
	DUP 2	SE189064.013	%	60 - 130%	105
/OC's in Soil				Method: ME-	(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	79
	BH1_0.4-0.5	SE189064.002	%	60 - 130%	78
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	78
	BH2_0.8-0.9	SE189064.004	%	60 - 130%	78
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	76
	BH3_0.8-0.9	SE189064.006	%	60 - 130%	75
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	73
	BH9_0.7-0.8	SE189064.008	%	60 - 130%	73
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	77
	BH10 0.8-1.0	SE189064.010	%	60 - 130%	72
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	75
	BH12 0.5-0.6	SE189064.012	%	60 - 130%	73
	DUP 2	SE189064.013	%	60 - 130%	74
	TRIP SPIKE	SE189064.015	%	60 - 130%	78
	TRIP BLANK	SE189064.016	%	60 - 130%	71
d4-1,2-dichloroethane (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	92
	BH1_0.4-0.5	SE189064.002	%	60 - 130%	88
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	86
	BH2_0.8-0.9	SE189064.004	%	60 - 130%	89
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	79
	BH3_0.8-0.9	SE189064.006	%	60 - 130%	92
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	87
	BH9_0.7-0.8	SE189064.008	%	60 - 130%	87
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	91
	BH10 0.8-1.0	SE189064.010	%	60 - 130%	82
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	86
	BH12 0.5-0.6	SE189064.012	%	60 - 130%	87
	DUP 2	SE189064.013	%	60 - 130%	84
	TRIP SPIKE	SE189064.015	%	60 - 130%	87
	TRIP BLANK	SE189064.016	%	60 - 130%	83
d8-toluene (Surrogate)	BH1_0.15-0.25	SE189064.001	%	60 - 130%	89
	BH1_0.4-0.5	SE189064.002	%	60 - 130%	85
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	83
	BH2_0.8-0.9	SE189064.004	%	60 - 130%	88
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	86
	BH3_0.8-0.9	SE189064.005	%	60 - 130%	89
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	82
	BH9_0.7-0.8	SE189064.007	%	60 - 130%	88
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	86
			%		
	BH10_0.8-1.0	SE189064.010		60 - 130%	82
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	85
	BH12_0.5-0.6	SE189064.012	%	60 - 130%	91
		SE189064.013	%	60 - 130%	81
	TRIP SPIKE	SE189064.015	%	60 - 130%	82
	TRIP BLANK	SE189064.016	%	60 - 130%	80

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Parameter Sample Name Sample Numb Units Criteria Dibromofluoromethane (Surrogate) BH1_0.15-0.25 SE189064 001 % 60 - 130% 83 BH1_0.4-0.5 SE189064.002 60 - 130% 78 % BH2 0.15-0.25 SE189064.003 % 60 - 130% 77 BH2_0.8-0.9 SE189064.004 60 - 130% 79 % BH3_0.15-0.25 SE189064.005 60 - 130% 82 % BH3 0.8-0.9 SE189064.006 60 - 130% 82 % BH9 0.25-0.35 SE189064.007 % 60 - 130% 76 BH9_0.7-0.8 SE189064.008 % 60 - 130% 79 BH10 0.2-0.3 SE189064.009 % 60 - 130% 79 BH10 0.8-1.0 SE189064.010 % 60 - 130% 74 BH12_0.15-0.25 SE189064.011 % 60 - 130% 77 BH12 0.5-0.6 SE189064.012 % 60 - 130% 84 DUP 2 SE189064.013 % 60 - 130% 75 TRIP SPIKE SE189064.015 60 - 130% 77 % TRIP BLANK SE189064.016 % 60 - 130% 78 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENVIAN433 Parameter Sample Name Sample Numbe Criteria Recovery % Bromofluorobenzene (Surrogate) BH1_0.15-0.25 SE189064.001 60 - 130% 79 % BH1 0.4-0.5 SE189064.002 % 60 - 130% 78 BH2_0.15-0.25 SE189064.003 % 60 - 130% 78 BH2_0.8-0.9 78 SE189064.004 60 - 130% % BH3 0.15-0.25 SE189064.005 % 60 - 130% 76 BH3_0.8-0.9 SE189064.006 60 - 130% 75 % BH9_0.25-0.35 SE189064.007 73 60 - 130% % BH9 0.7-0.8 SE189064.008 % 60 - 130% 73 BH10_0.2-0.3 SE189064.009 60 - 130% 77 % SE189064.010 60 - 130% 72 BH10_0.8-1.0 % BH12 0.15-0.25 SE189064.011 % 60 - 130% 75 BH12_0.5-0.6 SE189064.012 % 60 - 130% 73 DUP 2 SE189064.013 % 60 - 130% 74 TRIP BLANK SE189064.016 % 60 - 130% 71 d4-1,2-dichloroethane (Surrogate) BH1_0.15-0.25 SE189064.001 % 60 - 130% 92 BH1_0.4-0.5 SE189064.002 % 60 - 130% 88 BH2 0.15-0.25 SE189064.003 % 60 - 130% 86 BH2_0.8-0.9 SE189064.004 % 60 - 130% 89 BH3_0.15-0.25 SE189064.005 60 - 130% 79 % BH3 0.8-0.9 SE189064.006 % 60 - 130% 92 BH9_0.25-0.35 SE189064.007 % 60 - 130% 87 BH9_0.7-0.8 SE189064.008 % 60 - 130% 87 BH10 0.2-0.3 SE189064.009 % 60 - 130% 91 BH10_0.8-1.0 SE189064.010 60 - 130% 82 % BH12_0.15-0.25 86 SE189064.011 % 60 - 130% BH12 0.5-0.6 SE189064.012 % 60 - 130% 87 DUP 2 SE189064.013 60 - 130% 84 % TRIP BLANK SE189064.016 60 - 130% 83 % d8-toluene (Surrogate) SE189064.001 60 - 130% BH1 0.15-0.25 % 89 BH1_0.4-0.5 SE189064.002 % 60 - 130% 85 BH2_0.15-0.25 SE189064.003 % 60 - 130% 83 BH2 0.8-0.9 SE189064.004 % 60 - 130% 88 BH3 0.15-0.25 SE189064.005 % 60 - 130% 86 BH3_0.8-0.9 SE189064.006 % 60 - 130% 89 BH9 0.25-0.35 SE189064.007 % 60 - 130% 82 BH9_0.7-0.8 SE189064.008 % 60 - 130% 88 BH10_0.2-0.3 SE189064.009 % 60 - 130% 86 BH10 0.8-1.0 SE189064.010 % 60 - 130% 82 BH12_0.15-0.25 SE189064.011 % 60 - 130% 85 BH12_0.5-0.6 SE189064.012 60 - 130% 91 % DUP 2 SE189064.013 % 60 - 130% 81 TRIP BLANK SE189064.016 % 60 - 130% 80 Dibromofluoromethane (Surrogate) BH1_0.15-0.25 SE189064.001 60 - 130% % 83

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Sample Name

Volatile Petroleum Hydrocarbons in Soil (continued)

Parameter

		Method: ME-(AU)-[ENV]AN43		
Sample Number	Units	Criteria	Recovery %	

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Dibromofluoromethane (Surrogate)	BH1_0.4-0.5	SE189064.002	%	60 - 130%	78
	BH2_0.15-0.25	SE189064.003	%	60 - 130%	77
	BH2_0.8-0.9	SE189064.004	%	60 - 130%	79
	BH3_0.15-0.25	SE189064.005	%	60 - 130%	82
	BH3_0.8-0.9	SE189064.006	%	60 - 130%	82
	BH9_0.25-0.35	SE189064.007	%	60 - 130%	76
	BH9_0.7-0.8	SE189064.008	%	60 - 130%	79
	BH10_0.2-0.3	SE189064.009	%	60 - 130%	79
	BH10_0.8-1.0	SE189064.010	%	60 - 130%	74
	BH12_0.15-0.25	SE189064.011	%	60 - 130%	77
	BH12_0.5-0.6	SE189064.012	%	60 - 130%	84
	DUP 2	SE189064.013	%	60 - 130%	75
	TRIP BLANK	SE189064.016	%	60 - 130%	78

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB166839.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Met	hod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB167085.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

nple Number	Parameter	Units	LOR	Result
7081.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	100

LB167081.001 Dichlorvos mg/kg 0.5 <0.5	OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN420
Dimethode mg/g 0.5 <0.5 Diazion (Dimpylate) mg/kg 0.5 <0.5 Fenitrothion mg/kg 0.2 <0.2 Malathion mg/kg 0.2 <0.2 Chorpyrifos (Chlorpyrifos Ethyl) mg/kg 0.2 <0.2 Parathion-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Bromophos Ethyl (Parathion) mg/kg 0.2 <0.2 Methidathion mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2 Ethion mg/kg 0.2 <0.2 Azinpos-methyl (Gution) mg/kg 0.2 <0.2 Athytophenyl (Surogate) % - 106 Athytophenyl (Surogate) % - 102 Surogates Paraneter Malathion mg/kg 0.1 <th>Sample Number</th> <th>Parameter</th> <th>Units</th> <th>LOR</th> <th>Result</th>	Sample Number	Parameter	Units	LOR	Result
Partinon (Dimylate) mg/kg 0.5 <0.5	LB167081.001	Dichlorvos	mg/kg	0.5	<0.5
Image: second		Dimethoate	mg/kg	0.5	<0.5
Malathion mg/kg 0.2 <0.2		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Chioryifios (Chioryifios Ethyl) mg/kg 0.2 <0.2		Fenitrothion	mg/kg	0.2	<0.2
Paration-ethyl (Parathion) mg/kg 0.2 <0.2 Bromophos Ethyl mg/kg 0.2 <0.2		Malathion	mg/kg	0.2	<0.2
Bromophos Ethyl mg/kg 0.2 <0.2 Methidathion mg/kg 0.5 <0.5		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Methidathion mg/kg 0.5 <0.5 Ethion mg/kg 0.2 <0.2		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Ethion mg/kg 0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2		Bromophos Ethyl	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 Surrogates 2-fluorobiphenyl (Surrogate) % - 106 d14-p-terphenyl (Surrogate) % - 102 PAH (Polynuclear Aromatic Hydrocarbons) in Soll Method: ME-(AU)-[ENV]AN420 Method: ME-(AU)-[ENV]AN420 Sample Number Parameter Virits LOR Result LB167081.001 Naphthalene mg/kg 0.1 <0.1		Methidathion	mg/kg	0.5	<0.5
Surrogates 2-fluorobiphenyl (Surrogate) % - 106 d14-p-terphenyl (Surrogate) % - 102 PAH (Polynuclear Aromatic Hydrocarbons) in Soll Method: ME-(AU)-[ENV]AN420 Sample Number Parameter Method: ME-(AU)-[ENV]AN420 LB167081.001 Naphthalene mg/kg 0.1 <0.1		Ethion	mg/kg	0.2	<0.2
d14-p-terphenyl (Surrogate) % - 102 Method: ME-(AU)-[ENV]AN420 Sample Number Vatto: ME-(AU)-[ENV]AN420 Sample Number Parameter Units LOR Result LB167081.001 Naphthalene mg/kg 0.1 <0.1		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Method: Met	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	106
Sample NumberParameterUnitsLORResultLB167081.001Naphthalenemg/kg0.1<0.1		d14-p-terphenyl (Surrogate)	%	-	102
Naphtalene mg/kg 0.1 <0.1	PAH (Polynuclear Aromatic Hydrocarbons) in Soi	l i i i i i i i i i i i i i i i i i i i		Meth	od: ME-(AU)-[ENV]AN420
2-methylnaphthalene mg/kg 0.1 <0.1 1-methylnaphthalene mg/kg 0.1 <0.1	Sample Number	Parameter	Units	LOR	Result
1-methylnaphthalene mg/kg 0.1 <0.1 Acenaphthylene mg/kg 0.1 <0.1	LB167081.001	Naphthalene	mg/kg	0.1	<0.1
Acenaphthylene mg/kg 0.1 <0.1 Acenaphthene mg/kg 0.1 <0.1		2-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthene mg/kg 0.1 <0.1 Fluorene mg/kg 0.1 <0.1		1-methylnaphthalene	mg/kg	0.1	<0.1
Fluorene mg/kg 0.1 <0.1 Phenanthrene mg/kg 0.1 <0.1		Acenaphthylene	mg/kg	0.1	<0.1
Phenanthrene mg/kg 0.1 <0.1		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
Anthracene mg/kg 0.1 <0.1		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paramet Units Result LB167081.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthracene mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 98 2-fluorobiphenyl (Surrogate) % 106 d14-p-terphenyl (Surrogate) % 102 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Parameter Units LOR LB167081 001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 <0.2 Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 100 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Result Parameter Units LOR LB167083.001 Arsenic, As mg/kg <1 1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 < 0.3 <0.5 Copper, Cu 0.5 mg/kg 0.5 <0.5 Nickel, Ni mg/kg Lead, Pb mg/kg 1 <1 Zinc, Zn 2 <2.0 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Units LOR Result Parameter LB166853.001 Arsenic, As <1 µg/L 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 <1 Lead, Pb 1 µg/L Nickel. Ni <1 µg/L 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Parameter Units Result LB167081.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110 <110 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Result LB167080.001 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 Hydrocarbons Toluene 0.1 <0.1 mg/kg Ethylbenzene 0.1 <0.1 mg/kg m/p-xylene mg/kg 0.2 < 0.2 o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg

METHOD BLANKS

SE189064 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB167080.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	80
		d4-1,2-dichloroethane (Surrogate)	%	-	90
		d8-toluene (Surrogate)	%	-	86
		Bromofluorobenzene (Surrogate)	%	-	79
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hyd	drocarbons in Soil			Metho	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB167080.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	80
		d4-1,2-dichloroethane (Surrogate)	%	-	90
		d8-toluene (Surrogate)	%	-	86

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	(ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189064.010	LB167085.014	Mercury	mg/kg	0.05	0.10	0.12	74	16

Moisture Content

Moisture Content						Meth	od: ME-(AU)-[ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189064.010	LB167082.011	% Moisture	%w/w	0.5	11	13	38	13
SE189207.003	LB167082.020	% Moisture	%w/w	0.5	5.5	5.1	49	7

OC Pesticides in Soil

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
								200	
SE189064.011	LB167081.027		Hexachlorobenzene (HCB) Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			Heptachlor Aldrin	mg/kg	-	-		200	0
				mg/kg	0.1	<0.1	<0.1		
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.17	30	3
Pesticides in S	Soil						Meth	od: ME-(AU)-	
riginal	Duplicate		Parameter	Units	LOR	Original	Duplica <u>te</u>	Criteria %	RPD 9
190064 000	1 0467004 007		Disklasues		0.5	<0 F	<0 F	200	0

Pestici	SOI

OF Festicides III	301						Meur	00. ME-(AU)-[CIAA IMIAA
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189064.009	LB167081.027		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	S	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
AH (Polynuclea	r Aromatic Hydrocarbons) i	in Soil					Meth	od: ME-(AU)-[ENVJAN4
Original	Duplicate		Parameter	Units	LOR				

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E189064.009	LB167081.027		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	(
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	0.1	<0.1	125	3
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	0.3	0.3	63	
			Pyrene	mg/kg	0.1	0.2	0.3	68	
			Benzo(a)anthracene	mg/kg	0.1	0.1	0.2	101	
			Chrysene	mg/kg	0.1	0.1	0.2	101	
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.2	80	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.1	141	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.2	113	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	125	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene		0.1	<0.1	0.1	141	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td> mg/kg mg/kg</td><td>0.1</td><td><0.1</td><td>0.1</td><td>141</td><td></td></lor=0<>	mg/kg mg/kg	0.1	<0.1	0.1	141	
			Carcinogenic PAHs, Bar TEQ <lor=lor< td=""><td></td><td>0.2</td><td><0.2</td><td>0.2</td><td>116</td><td></td></lor=lor<>		0.2	<0.2	0.2	116	
			Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td>0.3</td><td>107</td><td></td></lor=lor></lor=lor 	mg/kg	0.3	<0.3	0.3	107	
			Total PAH (18)	mg/kg mg/kg	0.2	1.1	1.7	87	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	- 0.8	0.5	0.5	30	
		Sunogales	2-fluorobiphenyl (Surrogate)	mg/kg		0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg		0.5	0.5	30	
89207.002	LB167081.028		Naphthalene	mg/kg	0.1	<0.1	0.5	200	
03207.002	LD10/001.020		2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	
			Acenaphthene	mg/kg	0.1	<0.1	0	200	
			Fluorene	mg/kg	0.1	<0.1	0	200	
			Phenanthrene	mg/kg	0.1	0.3	0.49	54	
			Anthracene	mg/kg	0.1	<0.1	0.43	173	
			Fluoranthene	mg/kg	0.1	0.7	0.03	42	
			Pyrene	mg/kg	0.1	0.7	0.81	44	
			Benzo(a)anthracene	mg/kg	0.1	0.6	0.64	44	
			Chrysene	mg/kg	0.1	0.5	0.6	40	
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.8	0.92	40	
			Benzo(k)fluoranthene	mg/kg	0.1	0.5	0.92	54	
			Benzo(a)pyrene	mg/kg	0.1	0.5	0.53	45	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	0.58	49	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0.50	200	
			Benzo(ghi)perylene	mg/kg	0.1	0.4	0.43	55	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.1</td><td>0.9</td><td>0.9353</td><td>31</td><td></td></lor=0<>	mg/kg	0.1	0.9	0.9353	31	
			Carcinogenic PAHs, Bar TEQ <lor=lor< td=""><td>mg/kg</td><td>0.2</td><td>1.0</td><td>1.0353</td><td>39</td><td></td></lor=lor<>	mg/kg	0.2	1.0	1.0353	39	
			Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td></td><td>0.3</td><td>1.0</td><td>0.9853</td><td>39</td><td></td></lor=lor></lor=lor 		0.3	1.0	0.9853	39	
			Total PAH (18)	mg/kg mg/kg	0.2	5.7	6.48	43	
		Surrogataa	d5-nitrobenzene (Surrogate)		- 0.8	0.5	0.48	43 30	
		Surrogates		mg/kg					
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.51	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.48	30	
s in Soil							Meth	nod: ME-(AU)-	(ENV
ginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RP

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189064.011	LB167081.024	Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soil (con	· · · ·		Poromotor	Unite		Original		od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE189064.011	LB167081.024		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	3
otal Recoverable	e Elements in Soil/Wa	ste Solids/Materials	by ICPOES				Method: ME	-(AU)-[ENV]A	N040/AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE189064.010	LB167083.014		Arsenic, As	mg/kg	1	9	7	42	13
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	2.4	2.4	51	0
			Copper, Cu	mg/kg	0.5	8.5	8.4	36	2
			Nickel, Ni	mg/kg	0.5	2.3	2.1	53	8
			Lead, Pb	mg/kg	1	28	27	34	5
			Zinc, Zn	mg/kg	2	46	45	34	1
BH (Total Reco	verable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	
) 11 001		11. 14	100	<u></u>			
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD
SE189064.009	LB167081.026		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE189207.002	LB167081.024		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	52	59	111	13
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	59	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
/OC's in Soil							Meth	od: ME-(AU)-	-[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE189064.010	LB167080.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		, a official	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		3.7	3.6	50	2
		Gunogates	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.1	4.0	50	2
			d8-toluene (Surrogate)	mg/kg	-	4.1	4.0	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.6	50	0
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
		10(0)3	Total BTEX	mg/kg	0.6	<0.5	<0.5	200	0
SE189207.003	LB167080.024	Monocyclic	Benzene	mg/kg	0.0	<0.0	<0.0	200	0
	22101000.024	Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Bolyovalia	o-xylene	mg/kg					0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	3.9	50	6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.2	50	9
				mg/kg	-	4.3	4.1	50	7
			d8-toluene (Surrogate)						
		Totals	Bromofluorobenzene (Surrogate) Total Xylenes	mg/kg mg/kg	- 0.3	3.7	3.8	50 200	4

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (con	itinued)						Meth	od: ME-(AU)-	(ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189207.003	LB167080.024	Totals	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in Soi	1					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189064.010	LB167080.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.6	30	2
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.0	30	2
			d8-toluene (Surrogate)	mg/kg	-	4.1	4.1	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.6	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE189207.003	LB167080.024		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	3.9	30	6
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.2	30	9
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.1	30	7
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.7	3.8	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167085.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	95

OC Pesticides in S	Soil					1	Method: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167081.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	124
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	125
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	113
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	124
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	114
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	108
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	90
OP Pesticides in S	Soil					1	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167081.002		Dichlorvos	mg/kg	0.5	2.2	2	60 - 140	108
		Diazinon (Dimpylate)	mg/kg	0.5	2.1	2	60 - 140	105
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.0	2	60 - 140	102
		Ethion	mg/kg	0.2	1.8	2	60 - 140	89
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
PAH (Polynuclear	Aromatic Hydroca	arbons) in Soli				I	Nethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167081.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
		Acenaphthylene	mg/kg	0.1	4.7	4	60 - 140	117
		Acenaphthene	mg/kg	0.1	4.4	4	60 - 140	111
		Phenanthrene	mg/kg	0.1	4.4	4	60 - 140	111
		Anthracene	mg/kg	0.1	4.3	4	60 - 140	109
		Fluoranthene	mg/kg	0.1	4.2	4	60 - 140	104
		Pyrene	mg/kg	0.1	4.0	4	60 - 140	101
		Benzo(a)pyrene	mg/kg	0.1	4.6	4	60 - 140	114
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	98
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
PCBs in Soil						I	Method: ME-(A	U)-[ENV]AN42
		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
Sample Number								

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	n Soil/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167083.002	Arsenic, As	mg/kg	1	330	336.32	79 - 120	98
	Cadmium, Cd	mg/kg	0.3	410	416.6	69 - 131	98
	Chromium, Cr	mg/kg	0.3	33	35.2	80 - 120	95
	Copper, Cu	mg/kg	0.5	320	370.46	80 - 120	86
	Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	86
	Lead, Pb	mg/kg	1	90	107.87	79 - 120	84
	Zinc, Zn	mg/kg	2	280	301.27	80 - 121	91
Trace Metals (Dissolved) in W	/ater by ICPMS				I	Nethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB166853.002	Arsenic, As	μg/L	1	18	20	80 - 120	91
	Cadmium, Cd	μg/L	0.1	21	20	80 - 120	106
	Chromium, Cr	µg/L	1	22	20	80 - 120	112
	Copper, Cu	μg/L	1	23	20	80 - 120	115
	Lead, Pb	µg/L	1	21	20	80 - 120	104
	Nickel, Ni	µg/L	1	22	20	80 - 120	109
	Zinc, Zn	µg/L	5	22	20	80 - 120	110

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

•	erable Hydrocarbo			_			•	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167081.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	98
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	103
	TRH F Bands	TRH >C10-C16	mg/kg	25	39	40	60 - 140	98
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	100
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	110
/OC's in Soil						1	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB167080.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	81
	Aromatic	Toluene	mg/kg	0.1	2.3	2.9	60 - 140	81
		Ethylbenzene	mg/kg	0.1	2.3	2.9	60 - 140	80
		m/p-xylene	mg/kg	0.2	4.8	5.8	60 - 140	83
		o-xylene	mg/kg	0.1	2.3	2.9	60 - 140	81
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	5	60 - 140	79
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	90
		d8-toluene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
olatile Petroleum	Hydrocarbons in S	Soil				1	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB167080.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	88
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	83
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	5	60 - 140	79
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	90
		d8-toluene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	87
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	102

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery%									
	Mercury (dissolve	ed) in Water				Me	thod: ME-(AU)-	ENVJAN31	1(Perth)/AN312
	QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE188919.002 LB166839.004 Mercury mg/L 0.0001 0.0060 -0.0164 0.008 75	SE188919.002	LB166839.004	Mercury	mg/L	0.0001	0.0060	-0.0164	0.008	75

Mercury in Soil

Mercury in Soil						Met	hod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE189064.001	LB167085.004	Mercury	mg/kg	0.05	0.21	<0.05	0.2	91

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
E189064.002	LB167081.024	Naphthalene	mg/kg	0.1	4.4	<0.1	4	110
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	4.7	<0.1	4	118
		Acenaphthene	mg/kg	0.1	4.4	<0.1	4	111
		Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	4.6	0.2	4	110
		Anthracene	mg/kg	0.1	4.4	<0.1	4	108
		Fluoranthene	mg/kg	0.1	4.3	<0.1	4	105
		Pyrene	mg/kg	0.1	4.2	<0.1	4	102
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	_	_
		Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
		Benzo(a)pyrene	mg/kg	0.1	4.0	<0.1	4	99
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td></td><td>_</td></lor=0<>	TEQ (mg/kg)	0.2	4.0	<0.2		_
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.1</td><td><0.3</td><td></td><td>_</td></lor=lor<>	TEQ (mg/kg)	0.3	4.1	<0.3		_
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.0</td><td><0.2</td><td></td><td>_</td></lor=lor>	TEQ (mg/kg)	0.2	4.0	<0.2		_
		Total PAH (18)	mg/kg	0.8	35	<0.8		_
	Surr	ogates d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5		94
	Curr	2-fluorobiphenyl (Surrogate)	mg/kg	_	0.5	0.5		102
		d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5		96
					0.0			
tal Recoverabl	e Elements in Soil/Waste So	blids/Materials by ICPOES				Method: ME	-(AU)-[ENV]AN040/AN3
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
E189064.001	LB167083.004	Arsenic, As	mg/kg	1	51	7	50	88
		Cadmium, Cd	mg/kg	0.3	47	<0.3	50	94
		Chromium, Cr	mg/kg	0.3	50	3.5	50	93
		Copper, Cu	mg/kg	0.5	56	7.1	50	97
		Nickel, Ni	mg/kg	0.5	48	2.0	50	92
		Lead, Pb	mg/kg	1	70	24	50	92
		Zinc, Zn	mg/kg	2	74	27	50	95
ice Metals (Di	solved) in Water by ICPMS					Mett	nod: ME-(Al	J)-[ENV]AN3
C Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery
E189008.001	LB166853.004	Arsenic, As	µg/L	1	22	3	20	96
		Cadmium, Cd	μg/L	0.1	21	<0.1	20	105
		Chromium, Cr	μg/L	1	23	2	20	106
		Copper, Cu	μg/L	1	21	<1	20	105
		Lead, Pb	μg/L	1	22	2	20	99
		Nickel, Ni	μg/L	1	53	33	20	99
		Zinc, Zn	μg/L	5	25	<5	20	109
	useble Uudessebers) in Or		rơ -	-				
	verable Hydrocarbons) in So					Mett	iva: ME-(Al	J)-[ENV]AN4
RH (Total Reco								
Sample	Sample Number	Parameter	Units	LOR				

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

•		ns) in Soil (continue	· ·		1.00			nod: ME-(Al	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E189064.002	LB167081.025		TRH C10-C14	mg/kg	20	47	<20	40	118
			TRH C15-C28	mg/kg	45	53	<45	40	133
			TRH C29-C36	mg/kg	45	<45	<45	40	103
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	47	<25	40	118
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	47	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	133
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
C's in Soil							Mett	nod: ME-(Al	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E189064.001	LB167080.004	Monocyclic	Benzene	mg/kg	0.1	2.3	<0.1	2.9	80
		Aromatic	Toluene	mg/kg	0.1	2.3	<0.1	2.9	78
			Ethylbenzene	mg/kg	0.1	2.4	<0.1	2.9	82
			m/p-xylene	mg/kg	0.2	5.1	<0.2	5.8	87
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	84
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.2	-	83
		-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.6	-	84
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.4	-	86
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	3.9	-	89
		Totals	Total Xylenes	mg/kg	0.3	7.5	<0.3	-	-
			Total BTEX	mg/kg	0.6	14	<0.6	-	-
latile Petroleu	m Hydrocarbons in S	ioil						nod: ME-(Al	J)-IENVIAN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E189064.001	LB167080.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	90
			TRH C6-C9	mg/kg	20	20	<20	23.2	86
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.2	-	83
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	4.6	-	84
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.4	-	86
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	3.9	-	89
		VPH F	Benzene (F0)	mg/kg	0.1	2.3	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	106

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

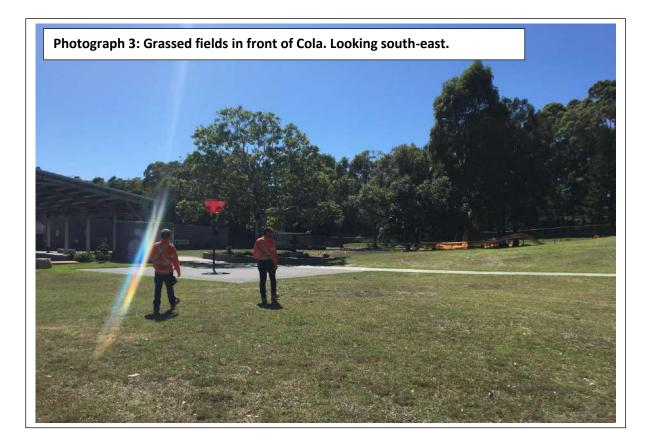
Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS				CI	HAI	10	F CI	JST	ODY	& AN	IALYS	SIS R	REQU	EST					Page 1	of _	3	
SGS Environmental Se Unit 16, 33 Maddox Str	Company Address:		:	Valley 3/62 Si	Civilat) gham /	Avenue	e Thornto	n 2322		Purc	ect Name chase Or ults Requ	der No:	P14 03	577- 934	- +	2012	#RA				
Alexandria NSW 2015											_	ephone:	neu by.	0429	0429 496 618							
Telephone No: (02) 859 Facsimile No: (02) 859	Contact Name: Malcolm Adrien							Facsimile: Email Results:					malcolm.adrien@vclab.com.au; jake.duck@vclab.com.a monica.esposito@vclab.com.au					<u>n.au;</u>				
Email: au.samplereceipt.syd	iney@sgs.com		1		1					T		T	T		T							
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL IF	ON HOLD	CL 10													
BH1_0.15-0.25	7/2/2019	T		X		1	×															
BH1- 0.4-05	7/2/2019	2		X		1			×							S	GS EH	S Ale	xandria Lab	orator	/ -	
341-0.6-0.2	7/2/2019			X		1		×								+ 1					-	
BH2-0.15-0.25	7/2/2019	3		X		1	×									+ 1					-	
BH2_0.8-0.9	7/2/2019	4		X		1			×							1 8	SE18	390	64 COC		-	
BH2-15-1.6	7/2/2019			X		1		×								R	eceive	d: 11	-Feb-201	9	-	
BH2-2.1-2.2	7/2/2019			X		1		×								+		1	í.		-	
843-0.15-0.25	7/2/2019	5		X		1	\times															
343-0.8-0.9	7/2/2019	6		X		1			\times		aluad Dir		1000			Date/1	Time	11	PEB19		1030	0
Relinquished By: Mon	A SPASI 4		ate/Tin		8/2	119					eived By: eived By:		1 App			Date/		11)	1011		1020	
Relinquished By:		D	ate/Tin				1				nple Cool		ed: Yes	s/ No		Labor	atory C	Quotat	ion No:			
Samples Intact: Yes No)		emper		Amb	ient /	nilled			San	ipie cool			W. 10-9757								_
		C	omme	nts:																		
						-									-		-	-				

SGS			C	HAI	N O	FC	UST	ODY	′ & A	NALY		REQUES	т	1.1			Page 2	of_3	_	
SGS Environmental Se	rvices	Company	Name		Valley								roject Name/No:	_	P16:	and the second se	Kot	ARA		
Unit 16, 33 Maddox Str	Address:		_	3/62 S	andrir	ngham	Avenu	e Thom	ton 2322	2		urchase Order N	_	03934						
Alexandria NSW 2015				_									esults Required l		0429 496 618					
Telephone No: (02) 859		1		-									acsimile:	_	0425 43	30 0 10				
Facsimile No: (02) 85	940499	Contact I	Name:	-	Malcolm Adrien						_						.com.au; jake	.duck@vcl	ab.com.au;	
Email: au.samplereceipt.syd	dney@sgs.com											E	mail Results:					b.com.au		
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	t1 TD	GIOH NO	CL 10											
BH3-1.3-1.4	7/2/2019			X		1		×									_			
BH9-0.25-0.35	7/2/2019	7		X		1	×										_	-		
BH9-0.7-0.8	7/2/2019	8		X		1			\times											
BH9-1.8-2.0	7/2/2019			X		1		×												
BH10-0.2-0.3	7/2/2019	9		X		1	×													
BH10- 0.8-1.0	7/2/2019	10		X		1			X											
BH10- 1.5-1.6	7/2/2019		1	X		1		×												
BH12-0.15-025	7/2/2019	11		X		1	×													
BH12-0.5-0.6		12		x		1			\times											
Relinquished By: Monro	the second se	Da	te/Tim	ie: {	3/2	119				Rec	eived By:	5	i las			ate/Time		UFEB 1	4 a	030
Relinquished By:			ite/Tim				0				eived By:					ate/Time)			
Samples Intact: Yes No)	Te	mpera	ture:	Ambi	ient / (Child			San	nple Coole	er Sea	aled: Mes/No		La	borator	y Quota	ation No:		
		Co	ommer	nts:																

SGS			C	на	IN C	DF C	cus	тог	DY 8	& AI	NALY	'SIS	S RE	QUE	EST					Page _	3_0	of <u>3</u>	-	
SGS Environmental S		Compar		ne:		y Civil									Name/N		PIEZZ - KOTARA							
Unit 16, 33 Maddox S Alexandria NSW 2015		Address	5:		3/62	Sandr	ingham	1 Aven	ue Th	ornton	2322		Purchase Order No: Results Required By:				03	93L	1					
Telephone No: (02) 85														Telepho	10	ей Бу.	0429	9 496 6	518					
Facsimile No: (02) 8	5940499	Contact	Name	:	Malco	olm Ac	Irien							Facsim										
Email: au.samplereceipt.s	ydney@sgs.con	n											1	Email F	Results:						com.au; jak .com.au	ke.duc	k@vcla	b.com.au;
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CLIT	ON HOLD	CL 10	GL2	CLS													
3412-1.2-1.3	7/2/2019			x		1		×									1							
DUP 2	7/2/2019	13		x		1	×											1						
RIN	7/2/2019	14		X		1	-			×							1		1	-	- sha	ml		
TRIP SPIKE	7/2/2019	15		X		1					X					-	-	1			with			
TRIP BLANK	7/2/2019	16		x		1					×							1			SEI		65	
	7/2/2019			x		1																AN		
	7/2/2019			x		1												1				110	J	
	7/2/2019			X		1											1							
	7/2/2019			X		1											1	1						
Relinquished By: MONIC	a toposit	> Dat	e/Tim	e: 8	\$ 12	119				F	Receiv	ed By:		Sw	ABY		<u> </u>	Date/1	lime	11	FEBI9		(03	20
Relinquished By:			e/Tim				~			F	Receiv	ed By:		<u> </u>				Date/1	Time		- +11		100	0
Samples Intact: Yes/ No		Ten	nperat	ure:	Ambie	ent / C	hiled			S	Sampl	e Coolei	r Sea	aled:)	Gel/ No			Labor	atory (Quotat	ion No:			
		Cor	nment	S:																				


Annex H

19/02/2020

Preliminary Site Investigation St James Primary School, 30 Vista Parade, Kotara

Ref: P1678-R-003-PSI-Rev0

Written by: Jake Duck (Environmental Scientist) Reviewed by: Malcolm Adrien (Environmental Services Manager) Approved by: Karl Dawes (General Manager) Email: <u>office@vclab.com.au</u> Client: Catholic Diocese of Maitland-Newcastle

Prepared for:
Catholic Diocese of Maitland-Newcastle
C/- Webber Architects
426 Hunter Street
Newcastle NSW 2300
Ph: 02 4926 1078
Email: sandra@webberarchitects.com
Web: www.webberarchitects.com

Prepared by:

Valley Civilab Pty Ltd ABN 50 103 355 531 3/62 Sandringham Avenue PO Box 3127 Thornton NSW 2322 Ph: (02) 4966 1844 Fax: (02) 4966 1855 Email: office@vclab.com.au Web: www.valleycivilab.com.au

Project Details

Site Address:	St James Primary School	, 30 Vista Parade, Kotara						
Project Type:	Preliminary Site Investigation							
Project No.	Report Type	Report No.						
P1678	PSI	3						

Report Register

Revision Number	Reported By	Reviewed By	Date
Rev0	JD	MA	19/2/20

We confirm that the following report has been produced for Catholic Diocese of Maitland-Newcastle, based on the described methods and conditions within.

For and on behalf of Valley Civilab Pty Ltd,

Ma

Malcolm Adrien Environmental Services Manager

Executive Summary

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School, 30 Vista Parade, Kotara NSW (herein referred to as the site).

The section of the site undergoing assessment currently consists of a gravel carpark, surrounded by grassed areas and pre-existing G Block Hall belonging to St James Primary School. The client has provided plans for the intended development of three new proposed buildings (Blocks A1, A2 and B), a new carpark and circulation road and a new footpath and forecourt across the entire site.

This PSI includes the following elements:

- Review of historical aerial images of the site and surrounding area;
- Compilation of a historical title summary;
- Review of a Section 10.7 Planning Certificate;
- Review of publicly available environmental databases and legislative instruments;
- Site inspection and interview with knowledgeable site representative (if available);
- A preliminary Conceptual Site Model (CSM) with assessment of source-pathway-receptor linkages; and
- Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required.

With use of a VC supplied drill rig, a total of fifteen (15) soil samples (including one (1) duplicate sample for QA/QC purposes) were collected from seven (7) boreholes, drilled to a maximum depth of approximately 2.0m and sent to external lab SGS to be chemically analysed for a range of contaminants to determine site soils suitability in comparison to guidelines relevant to the proposed land use.

Desktop review of available information and site inspection including a limited soil investigation have allowed assessment of potential health and environmental issues relating to the site. Key findings were:

- 1) Potential contamination sources at the site are limited based on area land use;
- 2) Visible signs of gross contamination were not observed during site inspection and intrusive works;
- 3) Some minor contamination in shallow soils was identified within sampling locations. One sample exceeds the ESL value for F2 hydrocarbon fraction, however the sample location is from a shallow sample within a driveway area and the sample is not considered representative of the overall conditions of the Site and is not considered to pose a risk to sensitive receptors.
- 4) All sample results were below the HIL A land use criteria, which is the most sensitive land use provided in the NEPM.

In summary, based on the desktop study and limited intrusive sampling conducted on the Site, no indication of gross contamination has been identified which would constrain the expanded development of the Site for its use as a primary school.

Table of Contents

1	In	trodu	uction	1
	1.1	В	Background	1
	1.2	С	Dbjectives	1
	1.3	S	Scope of Works	1
	1.	3.1	Preliminary Site Investigation	1
	1.	3.2	Limited Sampling	2
2	Si	te De	escription	3
	2.1	S	Site and Lot identification	3
	2.2	S	Surrounding Land Use	4
3	Ba	ackgr	round Data Review and Database Searches	4
	3.1	S	Summary of ownership and site use	4
	3.2	Н	Historical Photographs	6
	3.3	S	Site Setting	7
	3.4	Т	Fopography and hydrology	7
	3.	4.1	Lithology and Geology	7
	3.	4.2	Hydrogeology	7
	3.5	С	Chemical storage and waste production / disposal	8
	3.6	E	Environmental incident history / register	8
	3.7	С	Online Database Searches	8
	3.	7.1	Current and Former Environmental Protection Licenses	8
	3.	7.2	Heritage	9
	3.	7.3	Contaminated Land Records	9
	3.	7.4	Naturally Occurring Asbestos	9
4	Si	te Ins	spection	9
5	Sc	oil Inv	vestigation	9
	5.1	S	Soil sampling	10
	5.2	A	Assessment Criteria	10
	5.3	A	Analytical Results	11
6	Aı	nalyti	ical Data Quality Assessment	11

	6.1	Sample Collection, Storage, Transport and Analysis	12
	6.1.1	General	12
	6.1.2	2 Holding Times	12
	6.1.3	8 Sample Transport and Storage temperature	12
	6.2	Field Intra-Laboratory Duplicate Assessment	12
	6.3	Laboratory Quality Assurance and Quality Control	12
	6.4	Data Quality Summary	13
7	Preli	minary Conceptual Site Model	13
	7.1	Potential Sources and Associated Contaminants of Concern	13
	7.2	Potential Receptors and Pathways	13
	7.3	SPR Linkage Assessment	13
8	Cond	clusions	13

ANNEXES

Annex A – Figures

- Annex B S10.7 Planning Certificate
- Annex C Historical Title Documents
- Annex D Lotsearch Report
- Annex E Borelogs
- Annex F Tabulated Soil Results
- Annex G Laboratory Results
- Annex H Photographic Log

1 Introduction

1.1 Background

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School, 30 Vista Parade, Kotara ,NSW (herein referred to as the site).

The section of the site undergoing assessment currently consists of a gravel carpark, surrounded by grassed areas and pre-existing G Block Hall belonging to St James Primary School. The client has provided plans for the intended development of three new proposed buildings (Blocks A1, A2 and B), a new carpark and circulation road and a new footpath and forecourt across the entire site. The Preliminary Site Investigation is required for due diligence purposes as part of the development application.

A Site Features Plan is presented as *Figure 1* of *Annex A*.

1.2 Objectives

The objectives of this PSI were to investigate potential contaminant sources, pathways and receptors in relation to the site as well as inform preliminary consideration of potential risks to human health and/or the environment within the context of the most sensitive land use. The Site is intended to have a dual Commercial/Residential Land Use. For the purpose of the investigation, HIL A criteria has been adopted as the most sensitive land use.

This report has been prepared in general accordance with provisions for a PSI as defined within the *National Environment Protection Measure* (NEPC 2013), *AS 4482.1-1997 Guide to the sampling and Investigation of potentially contaminated soil* and the *Guidelines for Consultants Reporting on Contaminated Sites* (NSW EPA 1997).

All information collected informed the development of the preliminary conceptual site model which provides a representation of potential contamination sources, receptors and exposure pathways between these sources and receptors.

1.3 Scope of Works

1.3.1 Preliminary Site Investigation

This PSI includes the following elements:

- Review of historical aerial images of the site and surrounding area;
- Compilation of a historical title summary;
- Review of a Section 10.7 Planning Certificate;
- Review of publicly available environmental databases and legislative instruments;
- Site inspection and interview with knowledgeable site representative (if available);
- A preliminary Conceptual Site Model (CSM) with assessment of source-pathway-receptor linkages; and

• Recommendations for further investigation, any management requirements and/or any ongoing management, monitoring or remedial works that may be required

1.3.2 Limited Sampling

Collection of a total of fifteen (15) soil samples (including one (1) duplicate sample for QA/QC purposes) from seven (7) boreholes, drilled to a maximum depth of approximately 2.0m BGL using a VC supplied drill rig to determine site suitability for the proposed land use. Samples were analysed for the presence of the following analytes:

- Benzene, Toluene, Ethyl Benzene & Xylene (BTEX);
- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg);
- Organochlorine Pesticides (OCP) & Organophosphorus Pesticides (OPP);
- Polychlorinated Biphenyls (PCB).

Quality Assurance comprised of the following;

- Collection of a duplicate sample at a rate of 1 per 20 samples.
- One rinsate solution per day.

2 Site Description

2.1 Site and Lot identification

The site is located at St James Primary School, 30 Vista Parade, Kotara NSW, legally identified as Lot 12 DP 560852 and Lot 131 DP 262057. The site forms a rectangular shaped block of approximately 29,080m², adjacent to Vista Parade along the South Western boundary (SIX Maps, 2019).

A summary of site information is provided in *Table 1* below.

Table 1 - Site Identification

Item	Description
Current Site Owner	Trustees of the Roman Catholic Church for the Diocese of Maitland
Site Address	St James Primary School, 30 Vista Parade, Kotara
Current Zoning	Zone R2 Low Density Residential
Legal Description	Lot 12 DP 560852
	Lot 131 DP 262057
Local Government Authority	Newcastle City Council
Site Area	Approximately 29,080 m ²
Elevation	33m Above Sea Level (ASL)
Geographical Location	151°42'4.12"E
(GDA94-MGA56)	32°56'52.47"S

Review of The Newcastle Local Environmental Plan (LEP) 2012 together with the Planning Certificate under Section 10.7 Part 2 and 5 of the Environmental Planning and Assessment Act 1979 (attached as *Annex B*) provides the following information:

- 1) The site is not affected by heritage items;
- 2) The site and/or adjacent lots are not affected by land reserved for acquisition;
- 3) The site is not affected by environmentally sensitive land or critical habitat;
- 4) The site and/or adjacent lots are/contain flood prone land. Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development on flood prone land.
- 5) There are no prescribed matters under section 59(2) of the Contaminated Land Management Act 1997 to be disclosed.

Review of the CSIRO Acid Sulfate Resource Information Service (ASRIS, 2008) identifies the site as being within an unassessed area of Acid Sulfate Soils.

2.2 Surrounding Land Use

The site is located predominantly within a residential area of Kotara. Review of satellite imagery identified surrounding land uses as summarised in *Table 2* below.

Direction	Land Use	Distance
North	Residential dwellings	Adjacent
East	Residential dwellings	Adjacent
South	Residential dwellings	Adjacent
West	Residential dwellings	Adjacent

Table 2 - Summary of surrounding land uses

3 Background Data Review and Database Searches

3.1 Summary of ownership and site use

Historical title searches completed for the site provide a summary of ownership as described in *Table 3* below.

Table 3 - Summary of site ownership

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
14.08.1929 (1929 to 1956)	The Scottish Australian Mining Company Limited	Vol 4312 Fol 88 Now Vol 6102 Fol 167
09.07.1956 (1956 to 1964)	Hunter District Industries Pty Limited	Vol 6102 Fol 167 Now Vol 9881 Fol 9
14.10.1964 (1964 to 1967)	Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 9881 Fol 9 Now Vol 10684 Fol 82
23.11.1967 (1967 to 1970)	William Henry Hudson (Master Builder)	Vol 10684 Fol 82
02.03.1970 (1970 to 1973)	W.H. Hudson Developments Pty Limited	Vol 10684 Fol 82 Now Vol 12313 Fol 173
20.11.1973 (1973 to date)	# Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 12313 Fol 173 Now 12/560852

Historical title documents sourced as part of this assessment are presented as Annex C.

3.2 Historical Photographs

Historical aerials and satellite images dating 1954 – 2019 provide a summary of development at the site and within the surrounding area. Historical images are presented as part of *Annex D* and a summary of review in *Table 4* below.

Table 4 - Historical Aerial Review

Date	Summary
1954	The image dated 1954 is an excerpt from a low resolution black and white aerial photograph depicting the site and surrounding area. At this time, the site is vegetated vacant land with some minor commercial development to the south-western region of the area surrounding the site.
1965	The image dated 1965 is an excerpt from a high resolution black and white aerial photograph depicting the site and surrounding area. The site remains undeveloped as per the 1954 image, major residential development is seen to the immediate west of the site.
1976	The image dated 1976 is an excerpt from a high resolution colour aerial photograph depicting the site and surrounding area. The site remains undeveloped as per the 1954 and 1965 images, with some clearing of vegetation to the south of the site. Major residential development is seen to the immediate east of the site and development of St Phillips Church to the south of Vista Parade.
1983	The image dated 1983 is a low-resolution colour aerial image depicting the site and surrounding area. At this time, the development of St James PS can be depicted at the site. Surrounding residential areas remain consistent to the 1976 image.
1993	The image dated 1993 remains consistent with the 1983 image.
2007	The image dated 2007 is a high-resolution colour satellite image depicting the site and surrounding area. The site remains consistent to previous images with the addition of the netball/basketball courts to the south of the St James PS school buildings. Surrounding residential areas remain consistent to the 1983-1994 images.
2014	The image dated 2014 is a high-resolution colour satellite image depicting the site and surrounding area. Major development is apparent at the site, with the addition of a cola, covering the netball/basketball courts, additional coverage across the site and the development of the hall, parking area and connecting road to the existing St James PS buildings to the north.

Date	Summary
2018	The image dated 2018 is a low-resolution colour satellite image depicting the site and surrounding area. Some minor development within the site is apparent. Surrounding areas appear consistent to previous images.
2019	The image dated 2019 is a high-resolution colour satellite image depicting the site and surrounding area. Site and surrounding areas appear consistent to the 2018 image.

3.3 Site Setting

3.4 Topography and hydrology

Reference to the Newcastle Soil Landscape Map indicates that the site is located within the Cockle Creek Landscape. The landscape is characterized by narrow floodplains, alluvial fan deposits and broad delta deposits in the Awaba Hills. Review of Google Earth Pro (2019) indicates the site slightly slopes from 41 Above Sea Level (ASL) in the Eastern corner of the lot, to 32m ASL in the eastern corner. The closest surface water body identified is Styx Creek which runs adjacent to Grayson Avenue on the North-Western boundary of the site.

3.4.1 Lithology and Geology

Reference to the Newcastle Soil Landscape Map indicates that the site is located within the Cockle Creek Landscape. The landscape is characterized by narrow floodplains, alluvial fan deposits and broad delta deposits in the Awaba Hills.

Review of the NSW Department of Industry, Resources & Energy database; Newcastle 1: 250,000 Geological Sheet indicates that the site lies on the Newcastle Coal Measures. Typical lithology includes Conglomerate, Sandstone, tuff, shale and coal.

3.4.2 Hydrogeology

Review of the NSW Department of Primary Industries – Office of Water / Water Administration Ministerial Corporation database identified two registered bores within 1.5km of the site. Bore details are presented in *Table 5* below.

Bore ID	Construction Date	Location	Depth (mbgl)	Purpose
GW057772	01/02/1981	597m North	24.00	Recreation
				(groundwater)
GW061223	01/06/1985	1501m North East	36.50	Domestic

Table 5 - Groundwater Bore Details

Groundwater data for the identified bores were not available for review at the time of this report.

3.5 Chemical storage and waste production/disposal

The results of the SafeWork Dangerous Goods Search were not included as part of this report due to the historical and ongoing land use of the Site.

3.6 Environmental incident history/register

Sources to inform consideration of potential environment incidents at the site were not identified as part of this investigation.

3.7 Online Database Searches

3.7.1 Current and Former Environmental Protection Licenses

A review of the licenced activities under the Protection of the Environment Operations act 1997 was completed on the 11th February 2020.

A number of NSW EPA licensed activities have been conducted within proximity to the Site. The tables below list both former and current licensed activities and the type of licensed activity conducted.

Table 6 - Current Licensed EPA Activities

EPL	Organisation	Activity	Approximate Distance from Site
4965	SYDNEY WATER CORPORATION	Other activities	3m West
6332	LAKE MACQUARIE CITY COUNCIL	Other activities	246m South West
12208	SYDNEY TRAINS	Railway systems activities	North West

Table 7 - Former Licensed EPA Activities

License Number	Organisation	Activity	Approximate Distance from Site
4653	LUHRMANN	Other Activities / Non Scheduled	On-site
	ENVIRONMENT	Activity - Application of Herbicides	
	MANAGEMENT PTY LTD		
4838	Robert Orchard	Other Activities / Non Scheduled	On-Site
		Activity - Application of Herbicides	
6630	SYDNEY WEED & PEST	Other Activities / Non Scheduled	On-Site
	MANAGEMENT PTY LTD	Activity - Application of Herbicides	

3.7.2 Heritage

Review of the Heritage Data Source - Planning & Environment, indicates the site is not affected by heritage items. The closest registered heritage item is an EPI Heritage item; 'Raspberry Gully Line Railway' situated 229m south-west of the Site. Registered heritage items within the area are described in *Table 8* below.

Table 8 - Heritage Item Summary

Heritage Item Number	Description	Approximate Distance from Site
-	Raspberry Gully Line Railway	229m South West
-	South Waratah Colliery	737m South West

A figure detailing locations of heritage items listed above is presented within Lotsearch Report in *Annex D*.

3.7.3 Contaminated Land Records

A review of the NSW EPA Contaminated Land Record of Notices was completed on 11th February 2020. This review identified that the site is not subject to regulation by the NSW EPA under Section 60 of the *Contaminated Land Management (CLM) Act 1997* and similarly that there are no sites within the surrounding area subject to regulation under the *CLM Act 1997*.

A review of the NSW EPA List of Contaminated Sites was completed 11th February 2020. This review identified that the site has not been notified to the EPA as a contaminated site and similarly that there are no sites within the surrounding area that have been notified. The findings of these reviews indicate that the site is unlikely to be impacted by contamination known to the EPA.

3.7.4 Naturally Occurring Asbestos

NSW Department of Industry, Resources & Energy (2016) identifies that the site does not fall in an area known to contain naturally occurring asbestos.

4 Site Inspection

Two Valley Civilab environmental scientists experienced in contaminated site assessments visited the Site 7th February 2019. Site inspection identified a sampling area consisting of a gravel carpark surrounded by grassed fields and a driveway adjacent to pre-existing G Block Hall connecting to Vista Parade at the southern boundary of the site. No obvious sings of contamination were visually identified during the site inspection or field investigation.

5 Soil Investigation

As stated in Section 1.3, a soil investigation was conducted for contaminants of concern. The sampling density and analytical schedule generated as part of this intrusive investigation is only intended to supplement findings from the desktop review of information and is not intended to meet the minimum requirements of a Detailed Site Investigation (DSI) as outlined within the *NSW Office of Environment and Heritage: Guidelines for Consultants Reporting on Contaminated Sites (2011).*

All works were conducted in accordance with Valley Civilab's relevant Standard Operating Procedures (SOPs). Methodologies are outlined in the following sub-sections. Borelogs are presented in *Annex E*, Soil Investigation locations are presented in *Figure 1* of *Annex A*.

5.1 Soil sampling

Limited Sampling consisted of the collection of a total of thirteen (13) soil samples (including one duplicate sample for QA/QC purposes) from six (6) boreholes, drilled to a maximum depth of approximately 2.0m BGL using a VC supplied drill rig to determine site suitability for the proposed land use. Samples were analysed for the presence of the following analytes:

- Benzene, Toluene, Ethyl Benzene & Xylene (BTEX);
- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg);
- Organochlorine Pesticides (OCP) & Organophosphorus Pesticides (OPP); and
- Polychlorinated Biphenyls (PCB).

Quality Assurance comprised of the following;

- Collection of a duplicate sample at a rate of 1 per 20 samples.
- One rinsate solution per day.

5.2 Assessment Criteria

Analytical data was screened against relevant Tier 1 Trigger Values as defined or referenced within the NEPM 2013 Schedule B1 for Residential A land use. Specifically:

- 1) Health Investigation Levels for Residential A land use (HIL-A) for heavy metals, PAHs, OCP, OPP and PCBs were derived from *Table 1A (1)*;
- 2) Health Screening Levels were derived from CRC Care Technical Report 10 Health screening levels for petroleum hydrocarbons in soil and groundwater – Summary (Friebel and Nadebaum 2011) for sand-based soils in Residential land use (HSL-A) for TRH, BTEX and Naphthalene. These include criteria for considering potential vapour intrusion defined in Table B3 and criteria for direct contact defined in Table B4;
- 3) Management Limits from Table 1B (7) for TPH fractions F1-F4 in soil for Residential land use;
- 4) Ecological investigation levels (EILs) for inorganics to assess risks to ecological receptors from Table 1B(4 and 5); and
- 5) Ecological screening levels (ESLs) for TPH fractions F1-F4, BTEX and Benzo(a)Pyrene in coarse soil for Residential A land use from Table 1B(6).

HIL and HSL assessment criteria address potential health risks to receptors associated with potential contamination.

As the proposed development consists of the expansion of the primary school, the most sensitive land use criteria provided in the NEPM has been adopted.

All criteria adopted along with their associated values are displayed in *Tables* 1 - 2 of *Annex F*.

5.3 Analytical Results

A tabulated assessment of analytical results against assessment criteria is presented in *Tables 1 - 2* within *Annex F* with laboratory reports presented in *Annex G*.

- Results of the laboratory analysis returned concentrations below the Limit of Reporting (LOR) for BTEX, OCP, OPP and PCB.
- All heavy metal results were below HIL-A criteria.
- Concentrations above the LOR for F2 fraction total recoverable hydrocarbon (TRH) were reported for samples BH13_0.15-0.25 and BH13_0.6-0.7, these values exceed ESLs for Fine and Coarse soils (NEPM 2013) but are below the applicable HSL for the soil type. A concentration above the LOR for F3 TRH was reported for Sample BH13_0.15-0.25, this value exceeds the ESL for coarse soils (NEPM 2013). All remaining samples were reported below the LOR for TRH.
- Concentrations above the LOR were reported in seven samples for Total PAH and in six samples for Benzo(a)pyrene, however these values were all still below HIL-A Criteria. Sample BH13_0.15-0.25 was reported with a concentration above the LOR for Naphthalene, however this value falls below screening criteria. All remaining samples were reported below the LOR for PAH.

The results of the analysis indicate the soils sampled for the targeted assessment area meet the HIL-A criteria for residential A which is the most sensitive land use criteria provided in the NEPM.

6 Analytical Data Quality Assessment

The quality of analytical data presented within this report has been assessed with reference to the following issues:

- 1) Sampling technique;
- 2) Preservation and storage of samples upon collection and transport to the laboratory;
- 3) Sample holding times;
- 4) Analytical procedures;
- 5) Laboratory limit of reporting (LOR);
- 6) Laboratory quality assurance (QA) procedures; and
- 7) The occurrence of apparently unusual or anomalous results.

A review of these items was conducted to assess data in terms of completeness, representativeness, comparability, accuracy and precision. A discussion of the data quality assessment related to the items listed above is provided in the subsections that follow.

6.1 Sample Collection, Storage, Transport and Analysis

6.1.1 General

Samples were collected, stored and transported to the laboratory in accordance with Valley Civilab's standard operating procedures which are consistent with guidelines provided in the ASC NEPM (2013). All samples were collected in appropriate containers provided by the laboratory.

6.1.2 Holding Times

Laboratory analysis was undertaken within specified holding times in accordance with Schedule B3 of the ASC NEPM (2013) and using NATA accepted analytical procedures.

6.1.3 Sample Transport and Storage temperature

In accordance with Schedule B3 of the ASC NEPM (2013), all samples were chilled during transport to the laboratory and evidence of chilling was recorded on the sample receipt documentation for the laboratory.

Field Intra-Laboratory Duplicate Assessment 6.2

Relative Percentage Differences (RPDs) were calculated between the primary sample concentration and its corresponding intra-laboratory duplicate. As stipulated by the NEPM, the RPD acceptance criteria is 30% however it is noted that higher variations can be expected for organic analysis, samples with low analyte concentrations or non-homogenous samples (NEPC, 2013). As such, the primary laboratory RPD acceptance criteria were used and are as follows:

- 1) Results <10 times the LOR: No Limit;
- 2) Results between 10-20 times the LOR: RPD must lie between 0-50%; and
- Results >20 times the LOR: RPD must lie between 0-30%

The results of the Rinsate sample analysis were all found be to be below the laboratory Limit of Reporting for all analytes, indicating field decontamination procedures were adequate.

Results of the RPD analysis between primary and duplicate samples were all within allowable limits.

The analytical data is considered sufficiently complete, representative, comparable, accurate and precise to serve as an adequate basis for interpretation for the purposes of this project.

Laboratory Quality Assurance and Quality Control 6.3

Laboratory QA/QC procedures and results are detailed in the certified laboratory results contained in Annex G. The analytical methods implemented by the laboratories were reported to be consistent with the scope of their NATA accreditation and consistent with Schedule B3 of the ASC NEPM (2013). The laboratory generally reported an adequate range and frequency of data quality information (including laboratory duplicates and control samples).

The reported laboratory data quality was considered acceptable to meet the objectives of this assessment.

12

6.4 Data Quality Summary

Overall, the data from this investigation is considered to be of sufficient quality to serve as a basis for interpretation as part of this assessment.

7 Preliminary Conceptual Site Model

A CSM is a representation of site related information regarding contaminant sources, exposure pathways and receptors. A CSM facilitates consideration of risks to human health and the environment associated with site contamination through assessment of source – pathway – receptor linkages. A preliminary CSM based on the understanding of site history and environmental setting is presented in the following sections.

7.1 Potential Sources and Associated Contaminants of Concern

Analytical results from the intrusive investigation did not indicate any Contaminants of Potential Concern (CoPC).

Off-site sources of contamination with the potential to affect the site were considered unlikely taking into consideration information discussed in Section 2.2 of this report.

7.2 Potential Receptors and Pathways

The following receptors have been identified based on current site setting and proposed future development:

- 1) Construction workers associated with the proposed development;
- 2) Current and future site users (including secondary students and workers);
- 3) Future on-site intrusive maintenance workers; and
- 4) Terrestrial flora and fauna.

Pathways by which the contamination may affect the receptors presented above includes:

- 1) Direct contact (dermal contact, incidental ingestion and dust inhalation);
- 2) Ecological uptake.

7.3 SPR Linkage Assessment

A source-pathway-receptor (SPR) linkage is present when a pathway links a source with a receptor. These linkages are considered complete where a risk to the identified receptors may exist, now or in the future. Given that soil analytical results were reported below the adopted screening criteria (HIL/HSL A) for the identified receptors via the relevant pathway (direct contact), this SPR linkage is incomplete. Therefore, a potential exposure risk is considered unlikely.

8 Conclusions

Valley Civilab Pty Ltd (Valley Civilab) was engaged by Catholic Diocese of Maitland-Newcastle to undertake a Preliminary Site Investigation (PSI) with limited sampling at the site located at St James Primary School, 30 Vista Parade, Kotara NSW (herein referred to as the site). Analysis was conducted for

contaminants of concern to identify any potential contamination issues that would constrain the site use for it's proposed expanding development.

The detailed desktop review of available information and thorough site inspection including shallow soil investigation have enabled the development of a preliminary conceptual site model allowing assessment of potential health and environmental issues relating to the site. Key findings were:

- 1) Potential contamination sources at the site are limited based on area land use;
- Visible signs of gross contamination were not observed during site inspection and intrusive works;
- 3) Some minor contamination in shallow soils was identified within sampling locations. One sample exceeds the ESL value for F2 hydrocarbon fraction, however the sample location is from a shallow sample within a driveway area and the sample is not considered representative of the overall conditions of the Site and is not considered to pose a risk to sensitive receptors.
- 4) All sample results were below the HIL A land use criteria, which is the most sensitive land use provided in the NEPM.

In summary, based on the desktop study and limited intrusive sampling conducted on the Site, no indication of gross contamination has been identified which would constrain the expanded development of the Site for its use as a primary school.

If you have any further questions about this report, please contact the undersigned.

For and on behalf of

Valley Civilab Pty Ltd

Ele.

Jake Duck Environmental Scientist.

Malcolm Adrien Environmental Services Manager

References:

- Australian Standard AS 4482.1-2005 (2005) *Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 1 – Non-volatile and Semi-Volatile Compounds.*
- National Environment Protection Council (NEPC), (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, NEPM, Canberra. Schedule B2: Guideline On-site Characterisation.
- NSW EPA (1997) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA (1997). Contaminated Land Management Act 1997.
- NSW EPA (2017) Naturally Occurring Asbestos in NSW <u>https://trade.maps.arcgis.com/apps/PublicInformation/index.html?appid=87434b6ec7dd4ab</u> <u>a8cb664d8e646fb06</u> accessed 23/01/20.

Lotsearch (2019) Enviro Professional, Reference: LS011100 EP 11 - Feb 2020 12:43:12

Geotechnical & Environmental Services

LIMITATIONS

This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. Valley Civilab performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. Valley Civilab makes no warranty concerning the suitability of the site for any purpose or the possibility of any use, development or re-development of the site. Except as otherwise stated, Valley Civilab's assessment is limited strictly to identifying specified environmental conditions associated with the subject site and does not evaluate structural conditions of any buildings on the subject site. Lack of identification in the report of any hazardous or toxic materials on the subject site should not be interpreted as a guarantee that such materials do not exist on the site.


This assessment is based on site inspection conducted by Valley Civilab personnel, sampling and analysis described in the report, and information provided by Catholic Diocese of Maitland-Newcastle or other people with knowledge of the site conditions. All conclusions and recommendations made in the report are the professional opinions of the Valley Civilab personnel involved with the project and, while normal checking of the accuracy of data has been conducted, Valley Civilab assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.

Valley Civilab is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.

VALLEY CIVILAB PREPARED THIS REPORT FOR THE SOLE AND EXCLUSIVE BENEFIT AND USE OF Catholic Diocese of Maitland-Newcastle. NOTWITHSTANDING DELIVERY OF THIS REPORT BY VALLEY CIVILAB OR Catholic Diocese of Maitland-Newcastle TO ANY THIRD PARTY, UNLESS OTHERWISE EXPRESSLY AGREED, ANY COPY OF THIS REPORT PROVIDED TO A THIRD PARTY IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, WITHOUT THE RIGHT TO RELY AND VALLEY CIVILAB DISCLAIMS ALL LIABILITY TO SUCH THIRD PARTY TO THE EXTENT PERMITTED BY LAW. ANY USE OF THIS REPORT BY A THIRD PARTY IS DEEMED TO CONSTITUTE ACCEPTANCE OF THIS LIMITATION.

Annex A

Notes: (1) The scale bar is approximate. (2) Base layer sourced from NearMap (2019).

Figure 1 - Borehole Plan

Scale (m) 40 20

Annex B

Newcastle

Planning Certificate

Section 10.7, Environmental Planning and Assessment Act 1979

To: Lotsearch Pty Ltd Level 3. 68 Alfred Street MILSONS POINT NSW 2061 Certificate No: PL2020/00661 \$133.00 Fees: Receipt No(s):

D001449713

Your Reference: LS011100

Date of Issue: 11/02/2020

The Land: Lot 12 DP 560852 30 Vista Parade Kotara NSW 2289

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1 - 21Additional advice under section 10.7(5): see Items 22 - 30

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone our Customer Contact Centre on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the City of Newcastle (CN) development policies for the general area, contact our Customer Contact Centre.

All information provided is correct as at 11/02/2020. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

City of Newcastle

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222

Customer Contact Centre Ground floor, 12 Stewart Avenue Newcastle West NSW 2300

Office hours: Mondays to Fridays 8.30 am to 5.00 pm

Part 1:

Advice provided under section 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 1 - Development Standards

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Urban Renewal) 2010

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

State Environmental Planning Policy (Concurrences) 2018

State Environmental Planning Policy (Primary Production and Rural Development) 2019

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone R2 Low Density Residential

Note: Refer to www.newcastle.nsw.gov.au or www.legislation.nsw.gov.au web site for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone R2 Low Density Residential

• Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To accommodate a diversity of housing forms that respects the amenity, heritage and character of surrounding development and the quality of the environment.

• Permitted without consent

Environmental protection works; Home occupations

• Permitted with consent

Boarding houses; Child care centres; Community facilities; Dwelling houses; Educational establishments; Emergency services facilities; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Home-based child care; Hospitals; Neighbourhood shops; Recreation areas; Residential accommodation; Respite day care centres; Roads; Tourist and visitor accommodation

• Prohibited

Backpackers' accommodation; Hostels; Rural workers' dwellings; Serviced apartments; Any other development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: There are no heritage items listed in the Newcastle Local Environmental Plan 2012 situated on the land.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on City of Newcastle (CN) web pages.

General Housing Code

Complying development under the General Housing Code MAY be carried out on this land.

Rural Housing Code

Complying development under the Rural Housing Code MAY be carried out on this land.

Housing Alterations Code

Complying development under the Housing Alterations Code MAY be carried out on this land.

General Development Code

Complying development under the General Development Code MAY be carried out on this land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code MAY be carried out on this land.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code MAY be carried out on this land.

Subdivision Code

Complying development under the Subdivision Code MAY be carried out on this land.

Demolition Code

Complying development under the Demolition Code MAY be carried out on this land.

Fire Safety Code

Complying development under the Fire Safety Code MAY be carried out on this land.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Mine Subsidence Compensation Act 1961

The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017. Development in a Mine Subsidence District requires approval from Subsidence Advisory NSW. Subsidence Advisory NSW provides compensation to property owners for mine subsidence damage. To be eligible for compensation, development must be constructed in accordance with Subsidence Advisory NSW approval. Subsidence Advisory NSW has set surface development guidelines for properties in Mine Subsidence Districts that specify building requirements to help prevent potential damage from coal mine subsidence.

NOTE: The above advice is provided to the extent that City of Newcastle (CN) has been notified by Subsidence Advisory NSW.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: Council has adopted a policy of restricting development or imposing conditions on properties affected by Land Contamination. Refer to the Newcastle Development Control Plan 2012, which may be inspected or purchased at our Customer Contact Centre.

Bush fire: Under clause 5.11 Bush fire hazard reduction of the Newcastle LEP 2012, bush fire hazard reduction work authorised by the Rural Fires Act 1997 may be carried out on any land without development consent. *NOTE: The Rural Fires Act 1997 also makes provision relating to the carrying out of development on bush fire prone land.*

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. City of Newcastle (CN) considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in CN either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Our information currently indicates that the property is, or contains, flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development of flood prone land. This includes development for the purpose of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings. The DCP may be viewed on our website, inspected or purchased at our Customer Contact Centre.

NOTE: More detailed flood information specific to the property is available on separate flooding certificate application through our Customer Contact Centre on (02) 4974 2000

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 7.12 Newcastle Local Infrastructure Contributions Plan 2019:

The Plan specifies section 7.12 contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on our website or may be inspected or purchased at our Customer Contact Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which CN is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which CN is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land, either in whole or in part IS bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

CN HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

(a) The land IS NOT AFFECTED by a current site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.

(b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which CN is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

CN HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which CN is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

Part 2:

Advice provided under section 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by City of Newcastle (CN).

Our records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: CN has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which we are unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Contact Centre on (02) 4974 2000.

23. Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Note: The Newcastle Local Environmental 2012 may have additional provisions that affect the carry out of development. Refer to the Newcastle Local Environmental 2012 for the full affect it may have on the land or obtain profession advice for more information.

24. Suspension of covenants.

Refer to 1.9A Suspension of covenants, agreements and instruments of the Newcastle Local Environmental Plan 2012.

25. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

26. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that CN has been notified by the Heritage Council of NSW. For up-to-date details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

27. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that CN has been notified by the National Trust of Australia (NSW). For upto-date details, contact the National Trust Ph 02 9258 0123.

28. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that CN has been notified by the Department of the Environment. For up-todate details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

29. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- declared World Heritage areas
- declared Ramsar wetlands
- listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

30. Other matters

The land is affected by the following:

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Local Planning Strategy

The Local Planning Strategy is the principal land use strategy for Newcastle. It was adopted by the Council on 28 July 2015. The Strategy is taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Lower Hunter Regional Strategy (2006 - 2031)

The Lower Hunter Regional Strategy has been prepared by the Department of Planning and Infrastructure. The contents of the strategy will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Issued without alterations or additions, 11/02/20 Authorised by

JEREMY BATH CHIEF EXECUTIVE OFFICER

Newcastle

Planning Certificate

Section 10.7, Environmental Planning and Assessment Act 1979

To: Lotsearch Pty Ltd Level 3. 68 Alfred Street MILSONS POINT NSW 2061 Certificate No: PL2020/00660 \$133.00 Fees: Receipt No(s):

D001449713

Your Reference: LS011100

Date of Issue: 11/02/2020

The Land: Lot 131 DP 262057 30 Vista Parade Kotara NSW 2289

Advice provided on this Certificate:

Advice under section 10.7(2): see items 1 - 21Additional advice under section 10.7(5): see Items 22 - 30

IMPORTANT: Please read this certificate carefully

This certificate contains important information about the land.

Please check for any item which could be inconsistent with the proposed use or development of the land. If there is anything you do not understand, phone our Customer Contact Centre on (02) 4974 2000, or come in and see us.

The information provided in this certificate relates only to the land described above. If you need information about adjoining or nearby land, or about the City of Newcastle (CN) development policies for the general area, contact our Customer Contact Centre.

All information provided is correct as at 11/02/2020. However, it's possible for changes to occur within a short time. We recommend that you only rely upon a very recent certificate.

City of Newcastle

PO Box 489 NEWCASTLE 2300

Phone: (02) 4974 2000 Facsimile: (02) 4974 2222

Customer Contact Centre Ground floor, 12 Stewart Avenue Newcastle West NSW 2300

Office hours: Mondays to Fridays 8.30 am to 5.00 pm

Part 1:

Advice provided under section 10.7(2)

ATTENTION: The explanatory notes appearing in italic print within Part 1 are provided to assist understanding, but do not form part of the advice provided under section 10.7(2). These notes shall be taken as being advice provided under section 10.7(5).

1. Names of relevant planning instruments and DCPs

The following environmental planning instruments, proposed environmental planning instruments and development control plans apply to the land, either in full or in part.

State Environmental Planning Policy No. 1 - Development Standards

State Environmental Planning Policy No. 21 - Caravan Parks

State Environmental Planning Policy No. 33 - Hazardous and Offensive Development

State Environmental Planning Policy No. 36 - Manufactured Home Estates

State Environmental Planning Policy No. 44 - Koala Habitat Protection

State Environmental Planning Policy No. 50 - Canal Estate Development

State Environmental Planning Policy No. 55 - Remediation of Land

State Environmental Planning Policy No. 64 - Advertising and Signage

State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development

State Environmental Planning Policy No. 70 - Affordable Housing (Revised Schemes)

State Environmental Planning Policy (Housing For Seniors or People with a Disability) 2004

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

State Environmental Planning Policy (State Significant Precincts) 2005

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007

State Environmental Planning Policy (Infrastructure) 2007

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

State Environmental Planning Policy (Urban Renewal) 2010

State Environmental Planning Policy (Affordable Rental Housing) 2009

State Environmental Planning Policy (State and Regional Development) 2011

State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017

State Environmental Planning Policy (Vegetation in Non-Rural Areas) 2017

State Environmental Planning Policy (Concurrences) 2018

State Environmental Planning Policy (Primary Production and Rural Development) 2019

Newcastle Local Environmental Plan 2012

Newcastle Development Control Plan 2012

2. Zoning and land use under relevant LEPs

Newcastle Local Environmental Plan 2012

Zoning: The Newcastle Local Environmental Plan 2012 identifies the land as being within the following zone(s):

Zone R2 Low Density Residential

Note: Refer to www.newcastle.nsw.gov.au or www.legislation.nsw.gov.au web site for LEP instrument and zoning maps.

The following is an extract from the zoning provisions contained in Newcastle Local Environmental Plan 2012:

Zone R2 Low Density Residential

• Objectives of zone

- To provide for the housing needs of the community within a low density residential environment.
- To enable other land uses that provide facilities or services to meet the day to day needs of residents.
- To accommodate a diversity of housing forms that respects the amenity, heritage and character of surrounding development and the quality of the environment.

• Permitted without consent

Environmental protection works; Home occupations

• Permitted with consent

Boarding houses; Child care centres; Community facilities; Dwelling houses; Educational establishments; Emergency services facilities; Exhibition homes; Exhibition villages; Flood mitigation works; Group homes; Home-based child care; Hospitals; Neighbourhood shops; Recreation areas; Residential accommodation; Respite day care centres; Roads; Tourist and visitor accommodation

• Prohibited

Backpackers' accommodation; Hostels; Rural workers' dwellings; Serviced apartments; Any other development not specified in, permitted without consent or permitted with consent

Minimum land dimensions for erection of a dwelling-house: The Newcastle Local Environmental Plan 2012 contains development standards relating to minimum land dimensions for the erection of a dwelling house. Refer to clause 4.1 Minimum subdivision lot size and Part 4 Principle development standards of the Newcastle LEP 2012 for provisions relating to minimum lot sizes for residential development.

Critical habitat: The Newcastle Local Environmental Plan 2012 does not identify the land as including or comprising critical habitat.

Heritage conservation area: The land is not within a heritage conservation area under the Newcastle Local Environmental Plan 2012.

Heritage items: There are no heritage items listed in the Newcastle Local Environmental Plan 2012 situated on the land.

3. Complying development

Note Other requirements: The advice below for all Complying Development Codes, is limited to identifying whether or not the **land**, the subject of the certificate, is land on which complying development may be carried out because of Clauses 1.17A(1)(c) to (e), (2), (3) & (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 (the Codes SEPP).

To ascertain the extent to which the complying development may or may not be carried out on the land, maps are available on City of Newcastle (CN) web pages.

General Housing Code

Complying development under the General Housing Code MAY be carried out on this land.

Rural Housing Code

Complying development under the Rural Housing Code MAY be carried out on this land.

Housing Alterations Code

Complying development under the Housing Alterations Code MAY be carried out on this land.

General Development Code

Complying development under the General Development Code MAY be carried out on this land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code MAY be carried out on this land.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code MAY be carried out on this land.

Subdivision Code

Complying development under the Subdivision Code MAY be carried out on this land.

Demolition Code

Complying development under the Demolition Code MAY be carried out on this land.

Fire Safety Code

Complying development under the Fire Safety Code MAY be carried out on this land.

4B. Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

The land IS NOT subject to an agreement for annual charges under section 496B of the Local Government Act 1993 for coastal protection services (within the meaning of section 553B of that Act).

5. Mine Subsidence Compensation Act 1961

The land IS WITHIN a declared Mine Subsidence District under section 20 of the Coal Mine Subsidence Compensation Act 2017. Development in a Mine Subsidence District requires approval from Subsidence Advisory NSW. Subsidence Advisory NSW provides compensation to property owners for mine subsidence damage. To be eligible for compensation, development must be constructed in accordance with Subsidence Advisory NSW approval. Subsidence Advisory NSW has set surface development guidelines for properties in Mine Subsidence Districts that specify building requirements to help prevent potential damage from coal mine subsidence.

NOTE: The above advice is provided to the extent that City of Newcastle (CN) has been notified by Subsidence Advisory NSW.

6. Road widening or realignment

NOTE: The Roads and Maritime Services (RMS) may have proposals that are not referred to in this item. For advice about affectation by RMS proposals, contact the Roads and Maritime Services, Locked Mail Bag 30 Newcastle 2300. Ph: 131 782.

The land IS NOT AFFECTED by any road widening or road realignment under Division 2 of Part 3 of the Roads Act 1993.

The land IS NOT AFFECTED by any road widening or road realignment under an environmental planning instrument.

The land IS NOT AFFECTED by road widening or road realignment under a resolution of the Council.

7. Policies on hazard risk restrictions

Except as stated below, the land is not affected by a policy referred to in Item 7 of Schedule 4 of the Environmental Planning and Assessment Regulation 2000 that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Potential acid sulfate soils: Works carried out on the land must be undertaken in accordance with Clause 6.1 Acid sulfate soils of the Newcastle Local Environmental Plan 2012.

Land Contamination: Council has adopted a policy of restricting development or imposing conditions on properties affected by Land Contamination. Refer to the Newcastle Development Control Plan 2012, which may be inspected or purchased at our Customer Contact Centre.

Bush fire: Under clause 5.11 Bush fire hazard reduction of the Newcastle LEP 2012, bush fire hazard reduction work authorised by the Rural Fires Act 1997 may be carried out on any land without development consent. *NOTE: The Rural Fires Act 1997 also makes provision relating to the carrying out of development on bush fire prone land.*

NOTE: The absence of a policy to restrict development of the land because of the likelihood of a particular risk does not imply that the land is free from that risk. City of Newcastle (CN) considers the likelihood of natural and man-made risks when determining development applications under section 4.15 of the Environmental Planning and Assessment Act 1979. Detailed investigation carried out in conjunction with the preparation or assessment of a development application may result in CN either refusing development consent or imposing conditions of consent on the basis of risks that are not identified above.

7A. Flood related development controls information

Our information currently indicates that the property is, or contains, flood prone land as defined in the Floodplain Development Manual: the management of flood liable land, April 2005 published by the NSW Government.

Section 4.01 Flood Management of Newcastle Development Control Plan (DCP) 2012 provides guidelines with respect to all development of flood prone land. This includes development for the purpose of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings. The DCP may be viewed on our website, inspected or purchased at our Customer Contact Centre.

NOTE: More detailed flood information specific to the property is available on separate flooding certificate application through our Customer Contact Centre on (02) 4974 2000

8. Land reserved for acquisition

The land is not identified for acquisition by a public authority (as referred to in section 3.15 of the Act) by any environmental planning instrument or proposed environmental planning instrument applying to the land.

9. Contributions plans

The following contribution plan/s apply to the land.

Section 7.12 Newcastle Local Infrastructure Contributions Plan 2019:

The Plan specifies section 7.12 contributions that may be imposed as a condition of development consent.

NOTE: Contributions plans are available on our website or may be inspected or purchased at our Customer Contact Centre.

9A. Biodiversity certified land

The land IS NOT biodiversity certified land under Part 8 of the Biodiversity Conservation Act 2016.

10. Biodiversity stewardship sites

The land IS NOT land (of which CN is aware) under a biodiversity stewardship agreement under Part 5 of the Biodiversity Conservation Act 2016.

10A. Native vegetation clearing set asides

The land IS NOT land (of which CN is aware) that contains a set aside area under section 60ZC of the Local Land Services Act 2013.

11. Bush fire prone land

The land, either in whole or in part IS bush fire prone land for the purposes of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Not applicable. The Native Vegetation Act 2003 does not apply to the Newcastle local government area.

13. Orders under Trees (Disputes Between Neighbours) Act 2006

CN HAS NOT been notified that an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

The land IS NOT AFFECTED by a direction by the Minister in force under section 75P (2) (c1) of the Act.

15. Site compatibility certificates and conditions for seniors housing

(a) The land IS NOT AFFECTED by a current site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Housing for Seniors and People with a Disability) 2004.

(b) The land IS NOT AFFECTED by any terms of kind referred to in clause 18(2) of the State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004, that have been imposed as a condition of consent to a development application granted after 11 October, 2007 in respect of the land.

16. Site compatibility certificates for infrastructure, schools or TAFE establishments

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Infrastructure) 2007.

17. Site compatibility certificates and conditions for affordable rental housing

The land IS NOT AFFECTED by a valid site compatibility certificate (of which CN is aware) issued under the State Environmental Planning Policy (Affordable Rental Housing) 2009.

18. Paper subdivision information

The land IS NOT AFFECTED by any development plan that applies to the land or that is proposed to be subject to a consent ballot.

19. Site verification certificates

The land IS NOT AFFECTED by a current site verification certificate (of which CN is aware) issued under the State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

20. Loose-fill asbestos insulation

CN HAS NOT been notified that the land includes any residential premises (within the meaning of Division 1A of Part 8 of the Home Building Act 1989) that are listed on the register of loose-fill asbestos insulation, that is required to be maintained under that Division.

21. Affected building notices and building product rectification orders

The land IS NOT AFFECTED by any affected building notice of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by any building product rectification order that has not been fully complied with, of which CN is aware that is in force in respect of the land.

The land IS NOT AFFECTED by an outstanding notice of intention to make a building product rectification order of which CN is aware.

An affected building notice has the same meaning as in Part 4 of the Building Products (Safety) Act 2017. Building product rectification order has the same meaning as in the Building Products (Safety) Act 2017.

Note: There are no matters prescribed by section 59(2) of the Contaminated Land Management Act 1997 to be disclosed, however if other contamination information is held by the Council this may be provided under a section 10.7(5) certificate.

Part 2:

Advice provided under section 10.7(5)

ATTENTION: Section 10.7(6) of the Act states that a Council shall not incur any liability in respect of advice provided in good faith pursuant to sub-section 10.7(5).

22. Outstanding Notices and Orders issued by City of Newcastle (CN).

Our records indicate that this premise IS NOT AFFECTED by a current notice or order (excluding the notices or orders mentioned in the note below).

NOTE: CN has not inspected the premises immediately prior to the issue of this certificate. It is possible that the premises are affected by matters of which we are unaware.

NOTE: This Certificate does not include any advice regarding outstanding notices or orders issued under the Environmental Planning and Assessment Act 1979 or the Local Government Act 1993. To obtain advice regarding these matters, you should lodge an application for a Certificate as to Outstanding Notices and Orders (accompanied by the appropriate fee). For further information, please contact the Customer Contact Centre on (02) 4974 2000.

23. Further consent requirements under the Newcastle Local Environmental Plan 2012.

The following provisions of the Newcastle Local Environmental Plan 2012 affect the carrying out of development on the land. These provisions are in addition to those required to be disclosed at Item 2 of this Certificate.

Refer to clause 3.1 Exempt Development of the Newcastle Local Environmental Plan 2012

Refer to clause 3.2 Complying Development of the Newcastle Local Environmental Plan 2012

Note: The Newcastle Local Environmental 2012 may have additional provisions that affect the carry out of development. Refer to the Newcastle Local Environmental 2012 for the full affect it may have on the land or obtain profession advice for more information.

24. Suspension of covenants.

Refer to 1.9A Suspension of covenants, agreements and instruments of the Newcastle Local Environmental Plan 2012.

25. Draft development control plans.

A draft development control plan DOES NOT APPLY to the land. The draft plans are exhibited pursuant to Part 3 of the Environmental Planning and Assessment Regulation 2000.

26. Heritage Act 1977.

The land IS NOT AFFECTED by a listing on the State Heritage Register or an Interim Heritage Order that is in force under the Heritage Act 1977.

NOTE: The above advice is provided to the extent that CN has been notified by the Heritage Council of NSW. For up-to-date details, contact the Office of Environment and Heritage, PO Box A290, South Sydney NSW 1232 Ph: (02) 9995 5000.

27. Listing by National Trust of Australia.

The land IS NOT AFFECTED by a listing of the National Trust of Australia (NSW).

NOTE: The above advice is provided to the extent that CN has been notified by the National Trust of Australia (NSW). For upto-date details, contact the National Trust Ph 02 9258 0123.

28. Australian Heritage Database.

The land IS NOT AFFECTED by a listing on the Australian Heritage Database.

NOTE: The above advice is provided to the extent that CN has been notified by the Department of the Environment. For up-todate details, contact the Department of the Environment, Heritage, King Edward Terrace, Parkes ACT 2600. Ph (02) 6274 1111.

29. Environment Protection & Biodiversity Conservation Act 1999 (Cth)

Under the (Commonwealth) Environment Protection and Biodiversity Conservation Act 1999, actions which have, may have or are likely to have, a significant impact on a matter of national environmental significance may be taken only with the approval of the Commonwealth Minister for the Environment.

Approval is also required for actions that have a significant effect on the environment of Commonwealth land. These actions may be on Commonwealth land or other land.

This approval is in addition to any approvals under the (NSW) Environmental Planning and Assessment Act 1979 or other NSW legislation.

Matters of national environmental significance are:

- declared World Heritage areas
- declared Ramsar wetlands
- listed threatened species and ecological communities
- · listed migratory species
- nuclear actions
- the environment of Commonwealth marine areas.

Locations within the City of Newcastle that are a declared Ramsar wetland include Kooragang Nature Reserve and Shortland Wetlands. Listed threatened species and listed migratory species are known to occur within the City of Newcastle.

30. Other matters

The land is affected by the following:

Newcastle earthquake

Earthquakes occurred in the vicinity of Newcastle on 28th December 1989 and 6 August 1994. Buildings on the land may have suffered damage as a consequence of the earthquakes. Prospective purchasers are advised to make their own enquiries as to whether the property is affected by any damage.

Local Planning Strategy

The Local Planning Strategy is the principal land use strategy for Newcastle. It was adopted by the Council on 28 July 2015. The Strategy is taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Lower Hunter Regional Strategy (2006 - 2031)

The Lower Hunter Regional Strategy has been prepared by the Department of Planning and Infrastructure. The contents of the strategy will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Newcastle City-Wide Floodplain Risk Management Study and Plan (2012)

The Newcastle City-wide Floodplain Risk Management Study and Plan addresses flood management for the City of Newcastle. The Study and Plan will be taken into account when CN assesses development applications and amendments to the Newcastle Local Environmental Plan 2012.

Note: Refer to our website to view the document. www.newcastle.nsw.gov.au

Issued without alterations or additions, 11/02/20 Authorised by

JEREMY BATH CHIEF EXECUTIVE OFFICER

Annex C

ABN: 36 092 724 251 Ph: 02 9099 7400 (Ph: 0412 199 304) Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

Summary of Owners Report

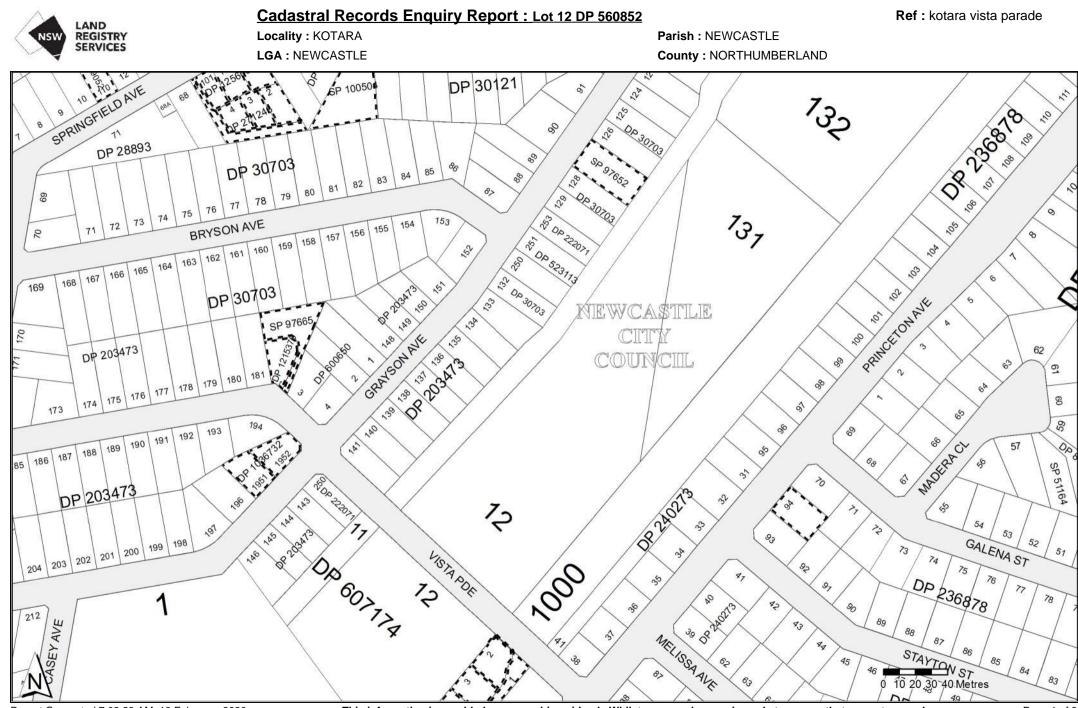
Address: - 30 Vista Parade, Kotara

Description: - Lot 12 D.P. 560852

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
14.08.1929 (1929 to 1956)	The Scottish Australian Mining Company Limited	Vol 4312 Fol 88 Now Vol 6102 Fol 167
09.07.1956 (1956 to 1964)	Hunter District Industries Pty Limited	Vol 6102 Fol 167 Now Vol 9881 Fol 9
14.10.1964 (1964 to 1967)	Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 9881 Fol 9 Now Vol 10684 Fol 82
23.11.1967 (1967 to 1970)	William Henry Hudson (Master Builder)	Vol 10684 Fol 82
02.03.1970 (1970 to 1973)	W.H. Hudson Developments Pty Limited	Vol 10684 Fol 82 Now Vol 12313 Fol 173
20.11.1973 (1973 to date)	# Trustees of the Roman Catholic Church for the Diocese of Maitland	Vol 12313 Fol 173 Now 12/560852

Denotes current registered proprietor

Leases: - NIL

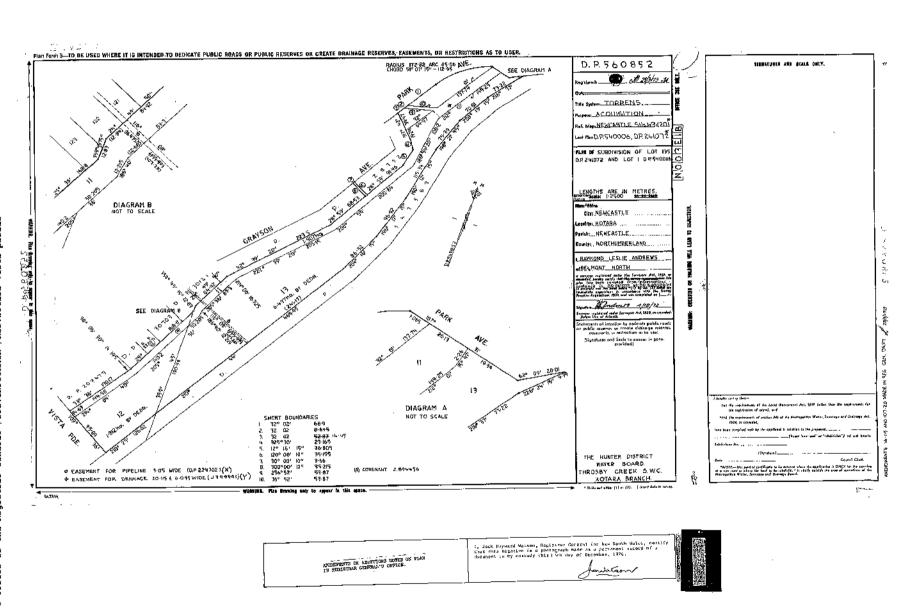

Easements: -

• 11.11.1982 (S 846861 & D.P. 616629) Easement for Stormwater Channel and Sewermain

*Rights to Mine

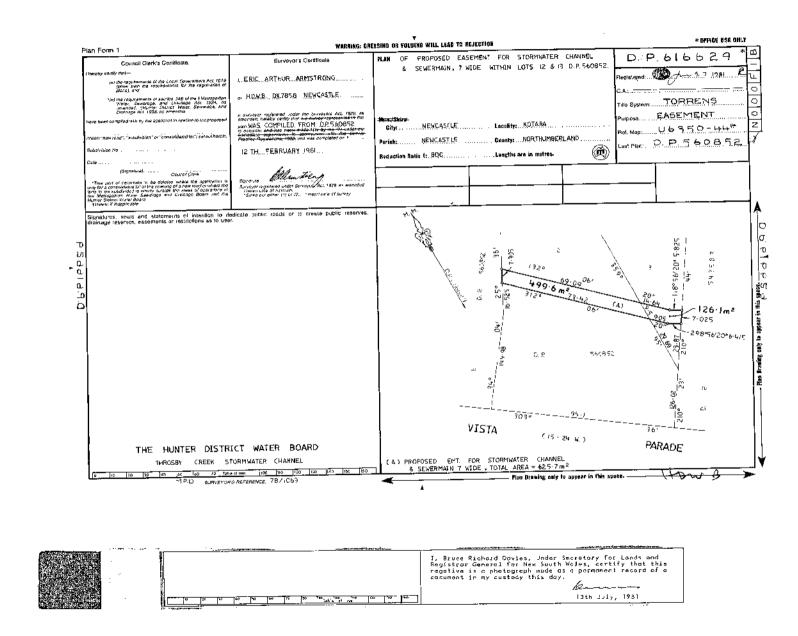
• 14.10.1964 (J 834456) Subject to Rights to mine

Yours Sincerely Mark Groll 13 February 2020

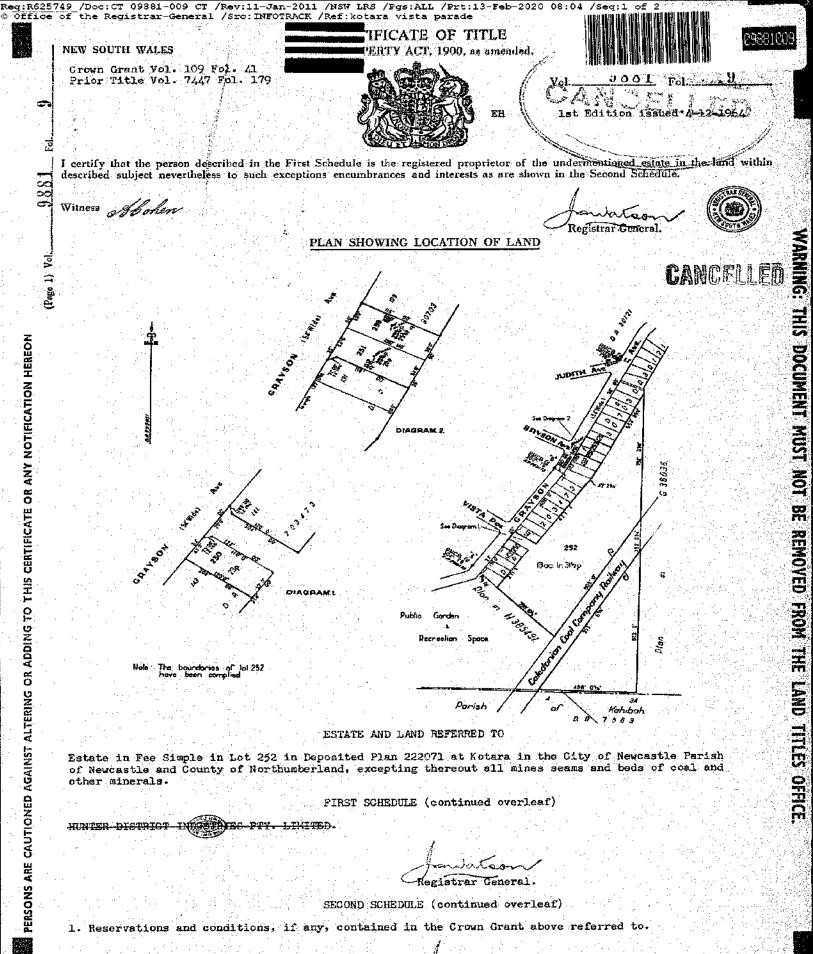


Report Generated 7:08:23 AM, 13 February, 2020 Copyright © Crown in right of New South Wales, 2017 This information is provided as a searching aid only.Whilst every endeavour is made to ensure that current map, plan and titling information is accurately reflected, the Registrar General cannot guarantee the information provided. For ALL ACTIVITY PRIOR TO SEPTEMBER 2002 you must refer to the RGs Charting and Reference Maps

Page 1 of 3



ч ÷ /Seg:1 /Pgs:ALL /Prt:13-Feb-2020 07:08 tara vista parade :04-Sep-1992 /NSW LRS /Pgs: /Src:INFOTRACK /Ref:kotara /Doc:DP 0560852 P /Rev:04-Sep-1992 the Registrar-General /Sro:INFOTRAC Reg:R625621 / © Office of 1



ч

å /Seg:1 07:09 /Prt:13-Feb-2020 ÷ /Pgs:ALL /Ref:kota LRS/Src:INFOTRACK /Ref /Rev:26-Nov-1992 al д /Doc:DP 0616629 the Registrar-Ge Reg:R625622 © Office of

Registrar General

HI JINGA	¥, C	Ν,	PERMIT.	GOVERNMENT	PaintLR	
----------	------	----	---------	------------	---------	--

N

Y.

	FIRST SCHEDULE (con	tinued)					1.
REGISTERED F	ROPRIETOR	NATURE			ENTERED	Signature of Registrar General	120
A h id a that id is a t	1 · 1 m	te te	TODENT	14-10.1964	15.1.1965	Jondation	10000000000000000000000000000000000000
Anustres of the Roman Catherine there for the	tweeve of Maulianes	- Arcuster	1854436	14 / G - 17Ey	<u>, 13 / 1 / 2863,</u>	0	of ont Is
The shot is concelled or to after the the				· ·····	.,	i, in the second se	D / 23
Now, Rectireday of the news Britten of -							12
for loss in a Eleci En Plan No. 734 5-77 as follow	14				· ·····		[P]
Louis / Far Vol. 10/17 Fol P / 22/ responsive					u =1 -1 1 1 1 1 1 1		hog has
							np nz
Javanon	• · · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , ,				••••···	John Sola
ALGISTRAR GENERAL					a a an an an an an an	······	
							ł
			· · · · · · · · · · · · · · · · · · ·	 	1	·	-
	SECOND SCHEDULE (co	ontinued)					
	PARTICULARS	ENTÉRED	Signature of Registrar General	· _ ·	CANCELLATION		
Covenant J83 4 4 56 Guinted by	Transfor Nº 553 0 456	15 1 1965	and she and				

	INSTRUMENT		PARTICULARS	ENTERED	Signature of Registrar General	CANCELLATION		
NATURE	NUMBER			<u> </u>		······································		
monart	J834456		Exected by Frencher Nº 57520456	15 1 1965	- Jan hat word			
transfer	J834456	14-19: 1964	Enument (light 5 let down the surface and sub-surface)		- Allins	······································		
		a ana an Anara ar ar	Afterly the level and descended an start to per a 763-9.	ili				
	· · · · · · · · · · · · · · · · · · ·		in the new noted shown on D.P. 23# 307	8.11.67	faultain			
					an i sana na mana ang ang			
						· · · · · · · · · · · · · · · · · · ·		
	-			······································	-,			
kija prostila i kao distanti i m								
- 	en mer, og ønner hærer her av om e					n a na an an ann an ann an ann ann ann		
	n star Brann (Samuara)							
, , , , , , , , , , , , , , , , , , , 				аналар <mark>изволь</mark> ение и воло -		n an		
		in an proving the system is a second se	• • • • • • • • • • • • • • • • • • •					
FORM	_ <u> </u>	<u> </u>	ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF		1	· · · · · · · · · · · · · · · · · · ·		

ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 2 in Deposited Plan 234597 at Kotara, in the City of Newcastle, Parish of Newcastle and County of Northumberland. EXCEPTING THEREOUT all mines, seams and beds of coal and other minerals.

FIRST SCHEDULE (continued overleaf)

WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE

TRUCTERS ROMAN -DICCESE OF MAITLAND.

<u>SECOND SCHEDULE</u> (continued overleaf)

- 1. Reservations and conditions, if any, contained in the Crown Grant above referred to.
- 2. Rights to mine all coal and other minerals affecting the land above described as set out in Transfer No. J834456.
- 3. Covenant created by Transfer No. J834456.

00 Registrar General.

PT.1 . 37 V.C.N. Bright, Government Printer

.

Req:R625743 /Doc:CT 10684-082 CT /Rev:13-Jan-2011 /NSW LRS /Pgs:ALL /Prt: © Office of the Registrar-General /Sro:INFOTRACK /Ref:kotara vista parade

2

õ

8 ŝ

Seq:

0 ю

		FIRST SCHEDULE (continued)					
		REGISTERED PROPRIETOR	NATURE	INSTRUMENT NUMBER	DATE	ENTERED	Signature of Registrar-Genera
<i>to <u>11</u> Indo</i> This D	Deed is cancelled as to pa	Henry Leader Hught, Aster Guiller Alg. Lunited t and New Certificates of Title Vol. 1540 FOI 207-212	Jaansfer Furnsfer	16 877 266	23-11-1467		Registrar-Genera Jachtean Jachtean
This Dee	l on. 10-3-1971 for ed is cancelled as to part	and New Certificates of Title Val 1549 11 9/3-240	.4	lan 240273		25.3.1971	Jauntaans
isrued on This Deed i	n_ 10-3-1971 for is cancelled as to partian 28-7-1971 for Se	d New Certificate's of Ticle Vol 11634 Fol 1 45 46.		an 240374		25.3.1971	Jakam?
		<u>(6 706 735</u>	Depented Pe	an 2H1072	,,,,,,,,	3-8-1971	Juntion
	· · · · · · · · · · · · · · · · · · ·						
	INSTRUMENT	SECOND SCHEDULE (continued)		· · · · ·	<u> </u>		
NATURE	NUMBER DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION	
	M119045	The interest of the Council of the City of Newcastle in the new road shown on D.P. 240273. Interests created pursuant to Soction 38B Conveyancing Xet, 1919. By the registration of Deposited Plan 240273. The interest of the Council of the of the City of Newcastle in new roads and addition to existing road shows on OP241072 Interests created provided Plan 2401022. The residue of land - in this certificate of title comprises to ad Entered 3rd August 1971	22 · 12 · 1970 (22 · 12 · 1970 (Januar Carrol			
<u></u>							

.

S RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

Req:R625731 /Doc:CT 11634-046 CT /Rev:12-Jan-2011 /NSW LRS / © Office of the Registrar-General /Src:INFOTRACK /Ref:kotara LRS /Pgs:ALL /Prt:13-Feb-2020 08:0. vista parade TITLE OF. ATE NEW SOUTH WALES ERTY ACT. 1900, as amended. 46 11634Fol Vol. 109 Fol.41 Crown Grant Vol. Edition issued 28-7-1971 Prior Title Vol.10684 Fol.82 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. κø Witness Registrar General. WARNING: THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE. PLAN SHOWING LOCATION OF LAND 1.34 (Page 1) Vol. PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON UDITH * AF 232071 ROIT ي آنو ۍ ESTATE AND LAND REFERRED TO

Estate in Fee Simple in Lot 135 in Deposited Plan 241072 at Adamstown in the City of Newcastle Parish of Newcastle and County of Northumberland. EXCEPTING THEREOUT all mines, seams and beds of coal and other minerals excepted by Transfer No.J834456.

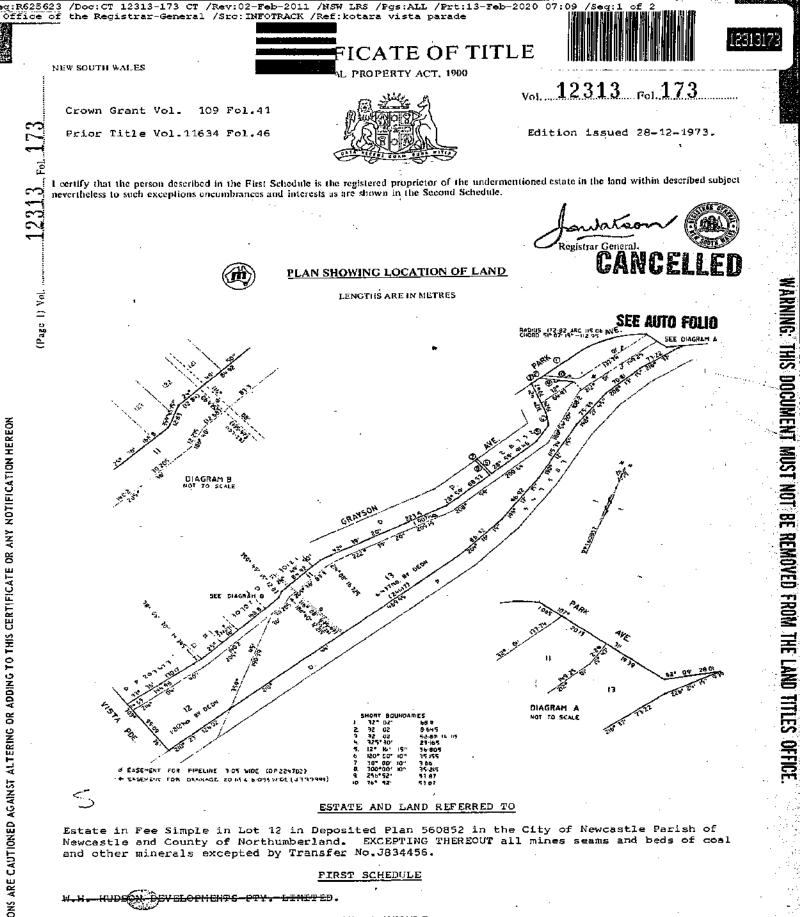
FIRST SCHEDULE

W.H. HUDSON DEVELOPMENTS PTY. LIMITED.

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to. 2. Rights to mine as set out in Transfer No. J834456.

3. Covenant created by Transfer No.J834456.


Registrar General

			FIRST SCHEDULE (continue	d)				NT, GOVENNENT PAINTER	
	• • • • • • • • • • • • • • • • • • • •		REGISTERED PROPRIETOR	<u>-,</u>	INSTRUMENT				0.000
				NATURE	NUMBER	DATE	ENTERED	Signature of Registran-General	DPSG
i his deed ls.	cancelled .as . is	بلي جلح و	de 20. 1. june						0720-
New Certifie	res of Title	baveisauesi	n 28 - 12 - 1973						
or loss in \mathbb{P}	poster Pla	n No. 5608	Siz as follows:	· ····		• • • • • • • • • • • • • • • • • • •			NALISZY
Lots 11 fo 1	3 Val 23	3 501 1210	?4-respectively.						kat II ir i N
	<i>u</i> .	Jatson		·				······	
· • · • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·	Neur	STHAR BEREH						· · · · · · · · · · · · · · · · · · ·	
								·	
····· · · · · · · · · ·			·				-		
······		•	·	······		·			
······								[
		· · · · · · · · · · · · · · · · · · ·							
·	. INSTRUMENT		SECOND SCHEDULE (continu	red)		·	<u> </u>		
PATURE	NUMBER	DATE	PARTICULARS	ENTERED	Signature of Registrar-General		CANCELLATION		
· · · · · · · · · · · ·		.						i i	
· · · · · · · · · · · · · · · ·			N					ļ	
· · · · · · · · · · · · · · · · · · ·	<u>v</u>						• • • • • • • • • • • • • • • • • • •		
				I				•	
					·····				
					······································			· · · · · · · · · · · · · · · · · · ·	
·····	· · · · · · · · · · · · · · · · · · ·			·····	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·									
									en
									40. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
									an a
									en

te de complete

. . . .

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR-GENERAL ARE CANCELLED

SECOND SCHEDULE

1. Reservations and conditions, if any, contained in the Crown Grant above referred to 2. Rights to mine as set out in Transfer No.J834456.P XE 3. Covenant created by Transfer No.J834456. P ∠√

THE REGISTRAR GENERAL SFA NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED

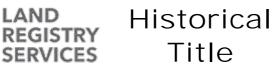
GRY

FIRST SCHEDULE (continued)					
REGISTERED PROPRIETOR		INSTRUMENT		ENTERED	Signature of Registrar General
	NATURE	NUMBER	DATE	<u> </u>	
The Trustees for the Roman Catholic Church of The Diocese of Maitland	Transfer	NB44873	20-11-1973	24-5-1974	- htere
					ļ
					
CANCELLED		- i		•	
	ļ <u></u>				
			1		
	· · · · ·				
CEC ANTA PALLA			·		
SEE AUTO FOLIO				·	
	1				

					SECOND SCHEDULE (continued)					
	NATURE	NUMBER	DATE		PARTICULARS	ENTERED	Signature of Rogistrar General	C.	ANCELLATION	
A	S846861 Transf	er.Basement	or stormwat	er_channel_	_and severmain affecting the part of the land w	ithin				
					Registered_11_11_1982		Barrows			
			· 							······································
		ļ 			······		-			
			 	<u> </u>	•		•			
				<u>-</u>					· · · · · · · · · · · · · · · · · · ·	
				· ···				-		
			<u> </u>							
							· · · · · · · · · · · · · · · · · · ·		· ·	1
pages)										
		-								
of 2		•						- <u></u>		
N		<u>+</u>	-							
(Poge			1	ļ			· ····	*	·	
-				- <u> </u>			-	-		
	•				· · · · · · · · · · · · · · · · · · ·					
			NOTE: ENTRIE	ES RULED T	HROUGH AND AUTHENTICATED BY THE SEAL OF TH	E REGISTRAR G	ENERAL ARE CA	NCELLED	•	·

in the second

.


N 5448737 0

Feb-20

/NSW LRS / /Ref:kotara

ã

NEW SOUTH WALES LAND REGISTRY SERVICES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 13/2/2020 7:09AM

FOLIO: 12/560852

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 12313 FOL 173

SERVICES

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
3/8/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/10/1996		AMENDMENT: LOCAL GOVT AREA	
4/6/2014	AI631395	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

kotara vista parade

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH _____

FOLIO: 12/560852

LAND

SERVICES

SEARCH DATE	TIME	EDITION NO	DATE
13/2/2020	7:08 AM	-	-

VOL 12313 FOL 173 IS THE CURRENT CERTIFICATE OF TITLE

LAND ____

LOT 12 IN DEPOSITED PLAN 560852 LOCAL GOVERNMENT AREA NEWCASTLE PARISH OF NEWCASTLE COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP560852

FIRST SCHEDULE _____

THE TRUSTEES FOR THE ROMAN CATHOLIC CHURCH OF THE DIOCESE OF MAITLAND (T N844873)

SECOND SCHEDULE (4 NOTIFICATIONS)

- RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1
- J834456 LAND EXCLUDES MINERALS AND IS SUBJECT TO RIGHTS TO 2 MINE
- 3 J834456 COVENANT
- * 4 S846861 EASEMENT FOR STORMWATER CHANNEL AND SEWERMAIN AFFECTING THE PART OF THE LAND WITHIN DESCRIBED SHOWN SO BURDENED IN DP616629

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

kotara vista parade

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Annex D

Date: 11 Feb 2020 12:43:12 Reference: LS011100 EP Address: 30 Vista Parade, Kotara, NSW 2289

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	28/10/2019	28/10/2019	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	15/01/2020	14/01/2020	Monthly	1000	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	29/01/2020	29/01/2020	Monthly	1000	0	0	0
Former Gasworks	Environment Protection Authority	07/01/2020	11/10/2017	Monthly	1000	0	0	0
National Waste Management Facilities Database	Geoscience Australia	05/11/2019	07/03/2017	Quarterly	1000	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	05/02/2020	13/07/2012	Quarterly	1000	0	0	2
EPA PFAS Investigation Program	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	2000	0	0	0
Defence PFAS Investigation Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Defence PFAS Management Program	Department of Defence	18/12/2019	18/12/2019	Monthly	2000	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	20/01/2020	12/12/2019	Monthly	2000	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	21/01/2020	21/01/2020	Monthly	2000	0	0	1
EPA Other Sites with Contamination Issues	Environment Protection Authority	04/02/2020	13/12/2018	Annually	1000	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	1	3
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	07/01/2020	07/01/2020	Monthly	1000	3	3	3
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150	0	3	3
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150	-	4	4
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500	0	0	0
UBD Business Directory Drycleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500	-	0	6
Points of Interest	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	1	2	39
Tanks (Areas)	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	1
Tanks (Points)	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	1
Major Easements	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	0	0	8
State Forest	NSW Department of Finance, Services & Innovation	18/01/2018	18/01/2018	As required	1000	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	21/01/2020	30/09/2019	·	1000	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000	2	2	2
Botany Groundwater Management Zones	NSW Department of Planning, Industry and Environment	15/03/2018	01/10/2005		1000	0	0	0
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018		2000	0	0	23

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)	No. Features Onsite	No. Features within 100m	No. Features within Buffer
Geological Units 1:250,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	2	-	3
Geological Structures 1:250,000	NSW Dept. of Industry, Resources & Energy	20/08/2014		None planned	1000	0	-	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000	0	0	0
Atlas of Australian Soils	ABARES	19/05/2017	17/02/2011	As required	1000	1	1	1
Soil Landscapes	NSW Office of Environment & Heritage	12/08/2014		None planned	1000	3	-	6
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	03/02/2020	06/12/2019	Weekly	500	1	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000	1	1	1
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000	0	0	0
Dryland Salinity Potential of Western Sydney	NSW Office of Environment & Heritage	12/05/2017	01/01/2002	None planned	1000	-	-	-
Mining Subsidence Districts	NSW Department of Finance, Services & Innovation	17/10/2019	17/10/2019	Quarterly	1000	1	1	2
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	03/02/2020	07/12/2018	Weekly	1000	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	03/02/2020	24/01/2020	Weekly	1000	1	4	51
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	31/07/2018	Quarterly	1000	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	04/02/2020	20/11/2019	Quarterly	1000	0	0	0
State Heritage Register - Curtilages	NSW Office of Environment & Heritage	08/11/2019	09/11/2018	Quarterly	1000	0	0	0
Environmental Planning Instrument Heritage	NSW Department of Planning, Industry and Environment	03/02/2020	17/01/2020	Weekly	1000	0	0	2
Bush Fire Prone Land	NSW Rural Fire Service	04/02/2020	14/12/2019	Quarterly	1000	2	3	4
Lower Hunter and Central Coast Regional Vegetation Survey	NSW Office of Environment & Heritage	28/02/2015	16/11/2009	As required	1000	2	2	6
Ramsar Wetlands of Australia	Commonwealth of Australia Department of the Environment	08/10/2014	24/06/2011	As required	1000	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	3	3	4
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000	5	5	10
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	05/02/2020	05/02/2020	Weekly	10000	-	-	-

Site Diagram

Contaminated Land

30 Vista Parade, Kotara, NSW 2289

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist (m)	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Contaminated Land

30 Vista Parade, Kotara, NSW 2289

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

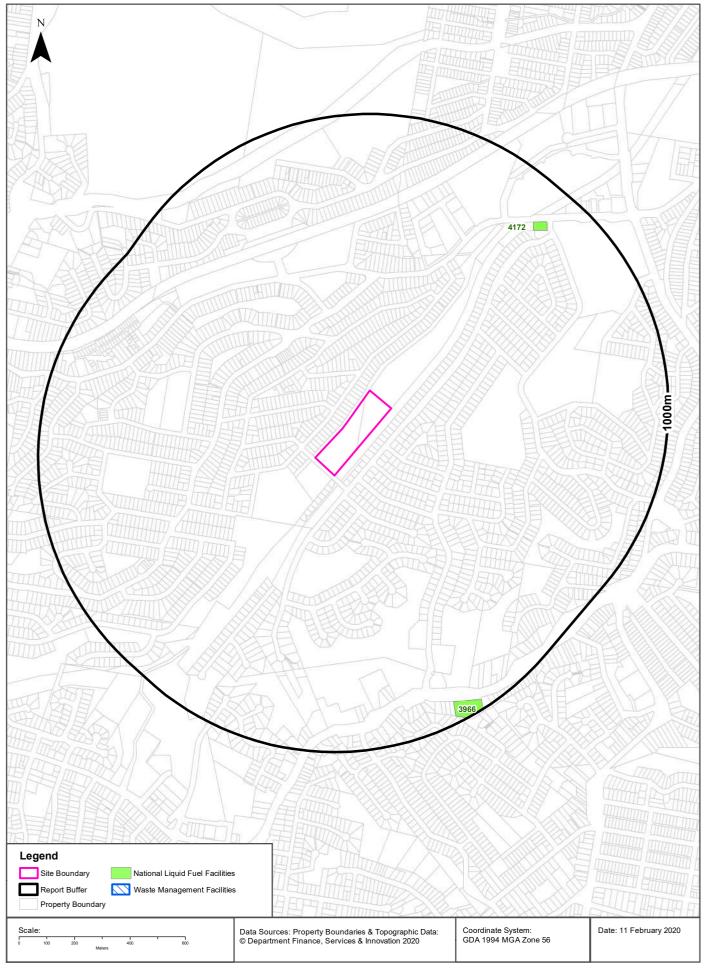
Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					


Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb C}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

Waste Management & Liquid Fuel Facilities

30 Vista Parade, Kotara, NSW 2289

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Comments	Loc Conf	Dist (m)	Direction
N/A	No records in buffer											

Waste Management Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist (m)	Direction
4172	Shell	Coles Express Kotara	93 Park Avenue	Kotara	Petrol Station	Operational		25/07/2011	Premise Match	823m	North East
3966	7-Eleven Pty Ltd	Mobil Charlestown	317 Pacific Highway	Highfields	Petrol Station	Operational		13/07/2012	Premise Match	922m	South East

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

30 Vista Parade, Kotara, NSW 2289

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

ld	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

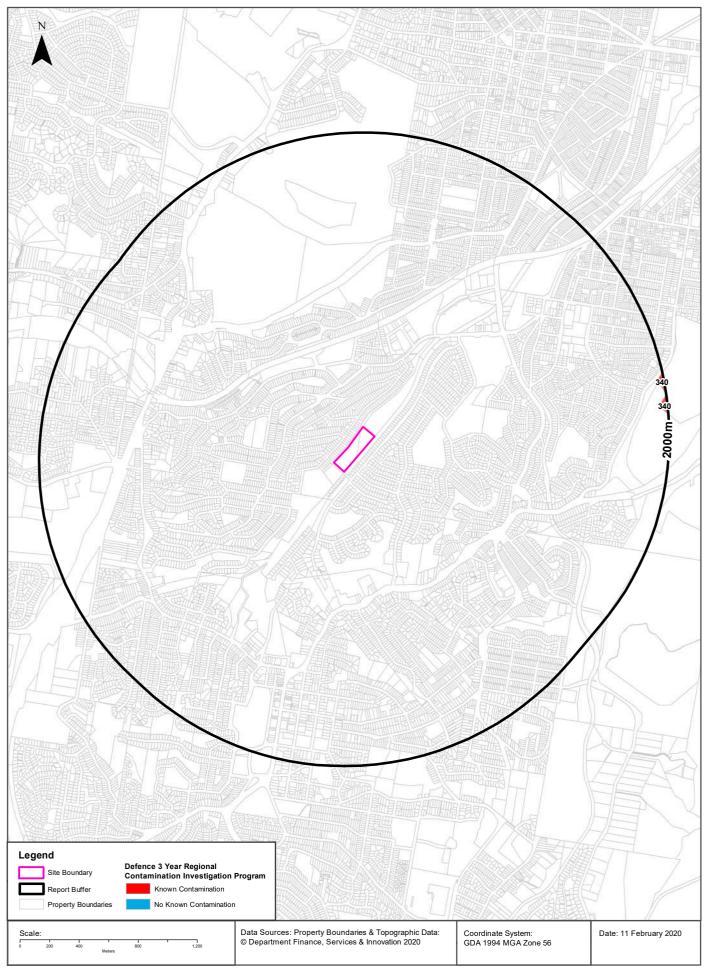
Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program


Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence 3 Year Regional Contamination Investigation Program

Defence Sites

30 Vista Parade, Kotara, NSW 2289

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
340	Adamstown MUD	Adamstown, New South Wales	YES	Premise Match	1942m	East

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

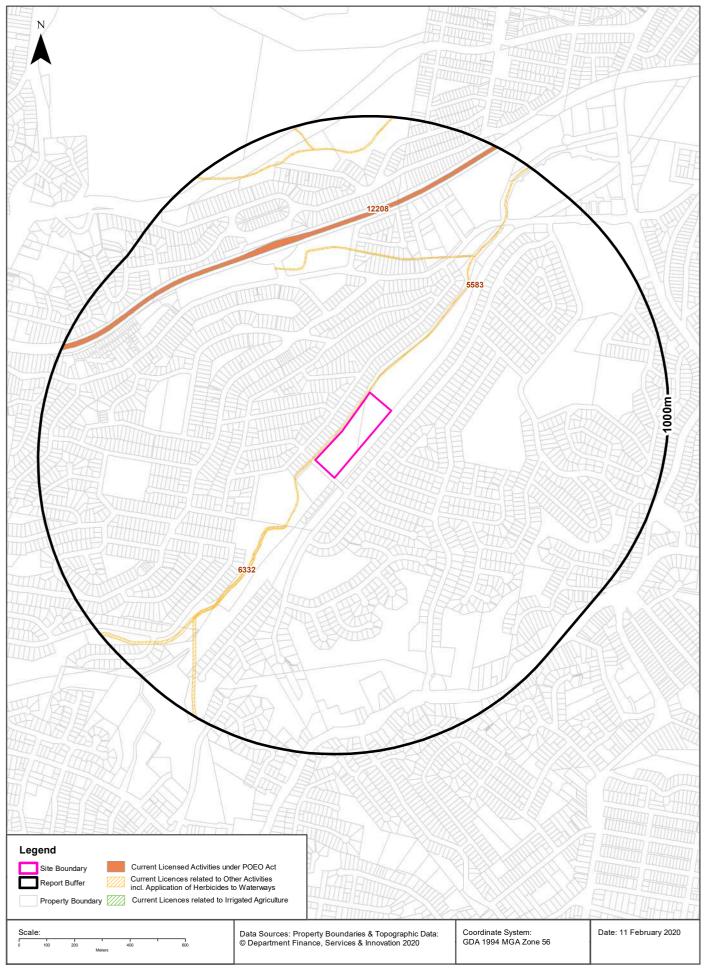
EPA Other Sites with Contamination Issues

30 Vista Parade, Kotara, NSW 2289

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area


Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Current EPA Licensed Activities

EPA Activities

30 Vista Parade, Kotara, NSW 2289

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
5583	NEWCASTLE CITY COUNCIL	WATERWAYS OF NEWCASTLE CITY	-	NEWCASTLE	Other activities	Network of Features	3m	West
6332	LAKE MACQUARIE CITY COUNCIL	-	-	SPEERS POINT	Other activities	Network of Features	246m	South West
12208	SYDNEY TRAINS		PO BOX K349, HAYMARKET, NSW 1238		Railway systems activities	Network of Features	605m	North West

POEO Licence Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

30 Vista Parade, Kotara, NSW 2289

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

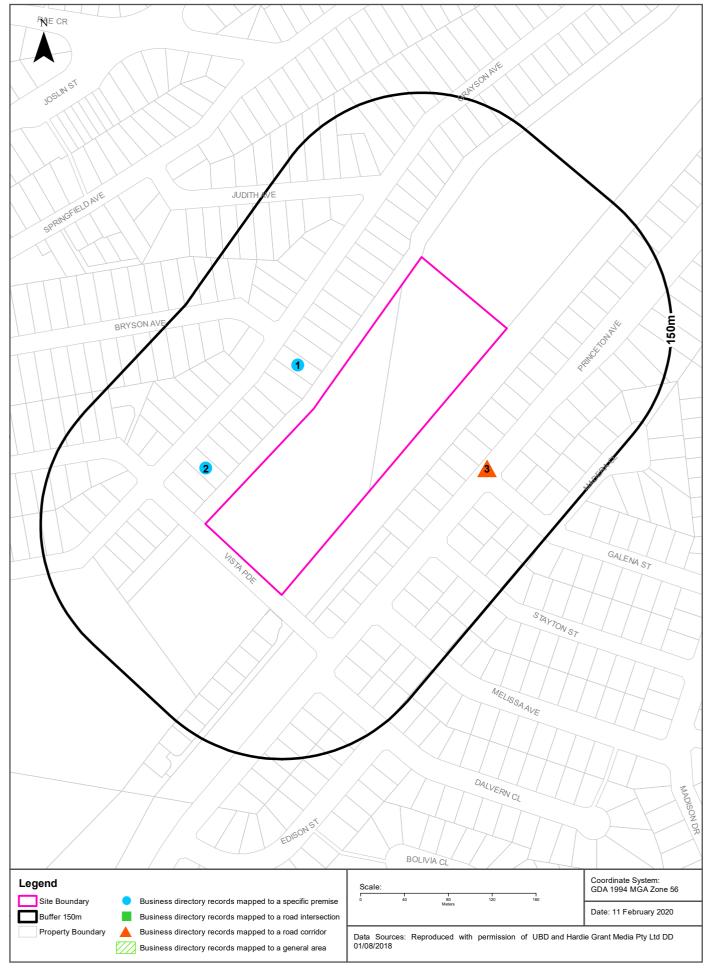
Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority

 $\ensuremath{\mathbb C}$ State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:


Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered	07/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	Onsite
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	Onsite

Former Licensed Activities Data Source: Environment Protection Authority

© State of New South Wales through the Environment Protection Authority

Historical Business Directories

Historical Business Directories

30 Vista Parade, Kotara, NSW 2289

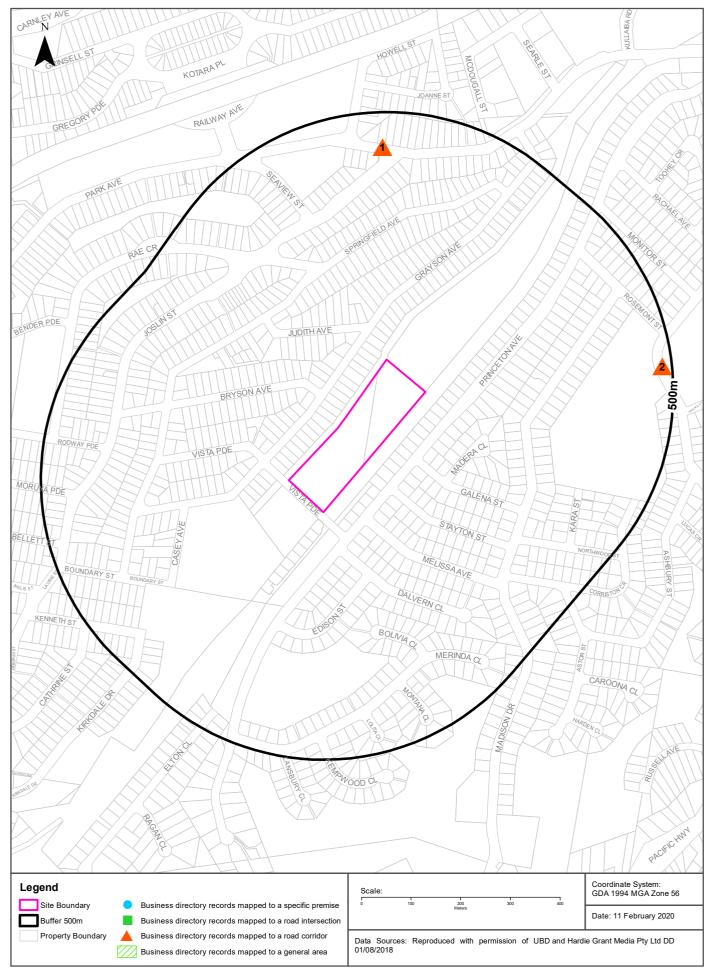
Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
1	BUILDERS &/OR BUILDING CONTRACTORS (M.M.B.A.)	Beveridge, K., 91 Grayson Ave., Kotara South, Newcastle	625327	1970	Premise Match	13m	North West
2	PAINTERS, PAPERHANGERS DECORATORS	Brown, T., 107 Grayson Ave., Kotara, Newcastle	632763	1970	Premise Match	14m	West
	SIGNWRITERS	Brown, T., 107 Grayson Ave., Kotara, Newcastle	634288	1970	Premise Match	14m	West

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Business Directory Records 1950-1991 Road or Area Matches


Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
3	SQUASH COURTS.	Belair Squash Centre., Princeton Av Kotara, Newcastle	92029	1991	Road Match	61m
	SQUASH COURTS.	Belair Squash Centre, Princeton Ave., Kotara. Newcastle	179537	1982	Road Match	61m
	INSURANCE BROKERS.	D.F.L. General Insurances, Belair Commercial Centre, Princeton Ave. Kotara Newcastle	175746	1982	Road Match	61m
	REAL ESTATE AGENTS &/OR VALUERS.	Tapp. R., Belair Commercial Centre, Princeton Ave., Kotara Newcastle	178745	1982	Road Match	61m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations

Historical Business Directories

30 Vista Parade, Kotara, NSW 2289

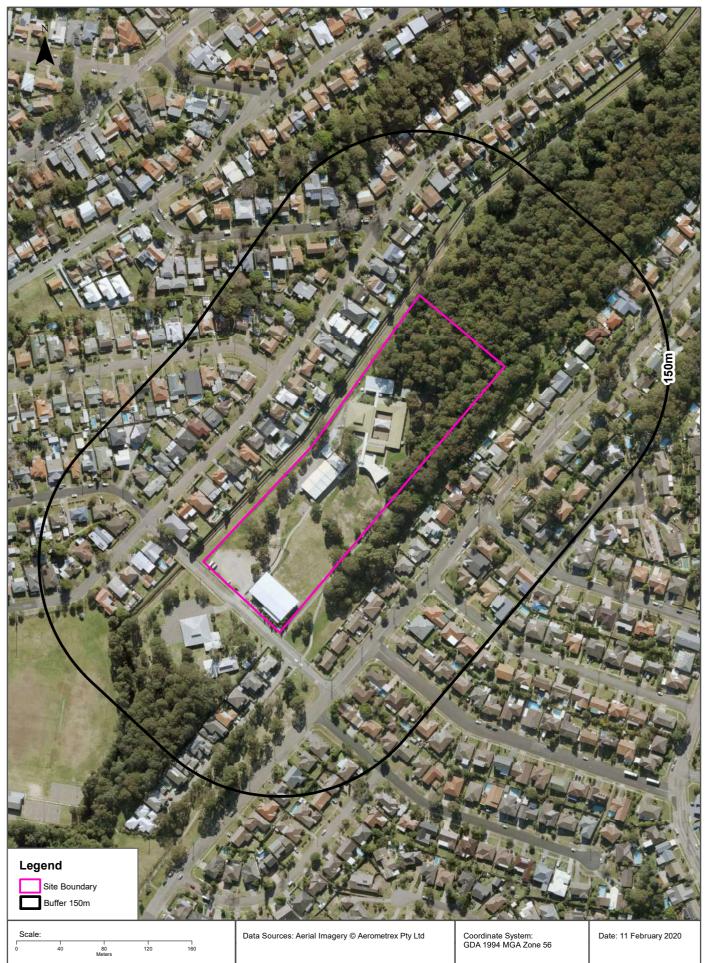
Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
	No records in buffer						

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

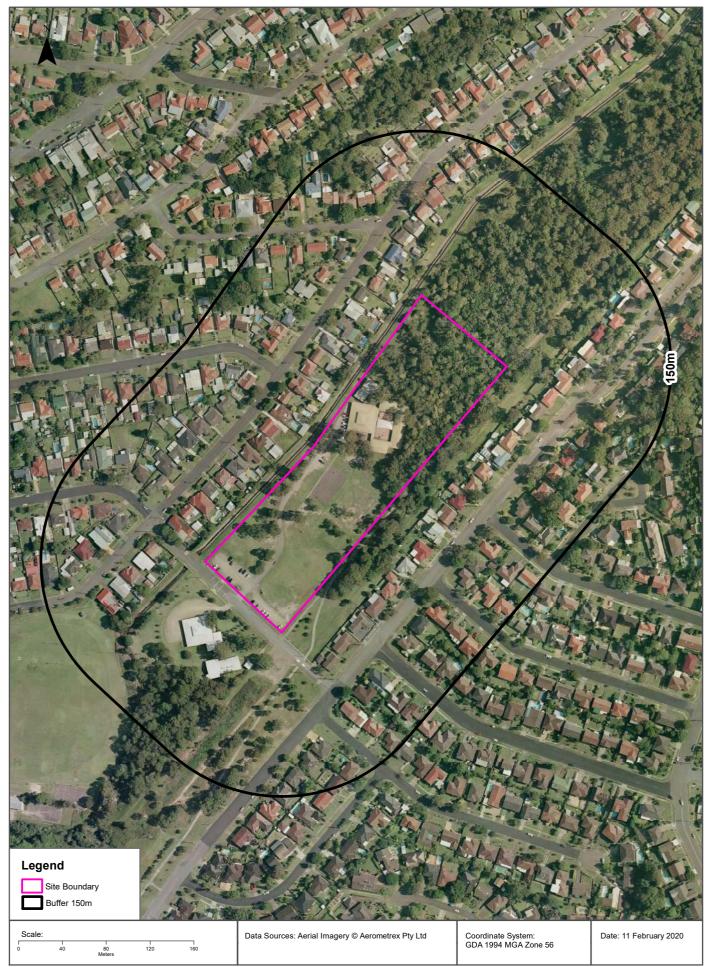

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

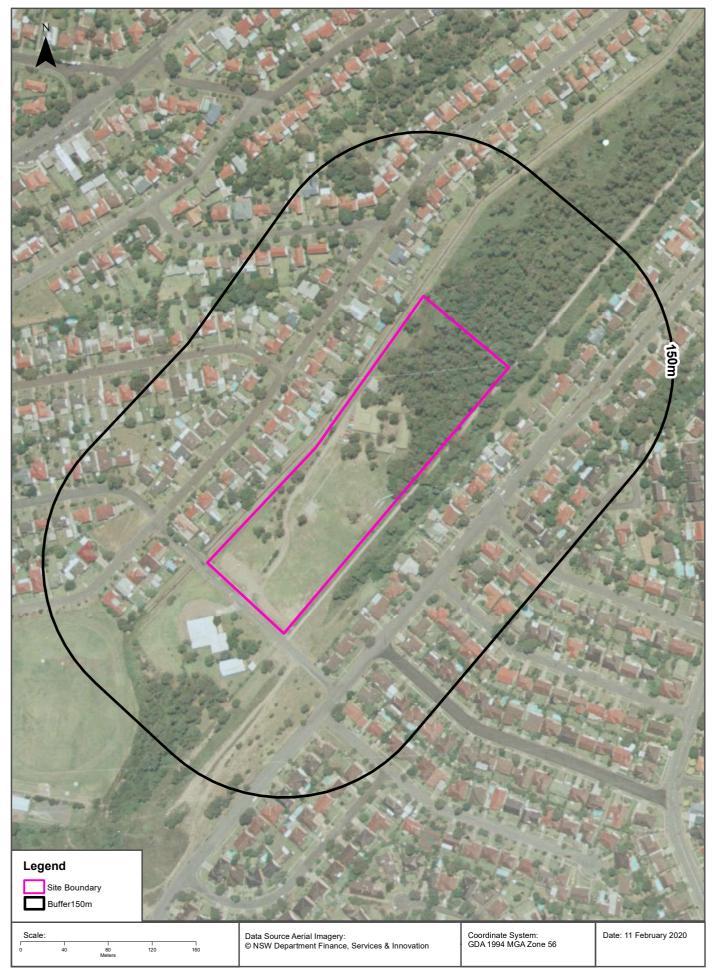
Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
1	MOTOR GARAGES &/OR ENGINEERS &/OR SERVICE STATIONS.	Amoco Parkway Service Station Park Ave. Adamstown Newcastle	177093	1982	Road Match	408m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	B.P. Service Station, Park Ave., Adamstown, Newcastle	632163	1970	Road Match	408m
	MOTOR GARAGES &/OR ENGINEERS	Bel-Air Service Station, Park Ave., Kotara South, Newcastle	631850	1970	Road Match	408m
	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	BP Kotara, Park Ave., Kotara, Newcastle	632166	1970	Road Match	408m
	MOTOR GARAGES &/OR ENGINEERS	Parkway Service Station, Park Ave., Adamstown, Newcastle	631933	1970	Road Match	408m
2	MOTOR SERVICE STATIONS-PETROL, OIL, ETC.	Esso Service Centre, Lexington Pde., Kotara, Newcastle	632209	1970	Road Match	462m

Reproduced with permission of UBD and Hardie Grant Media Pty Ltd DD 01/08/2018

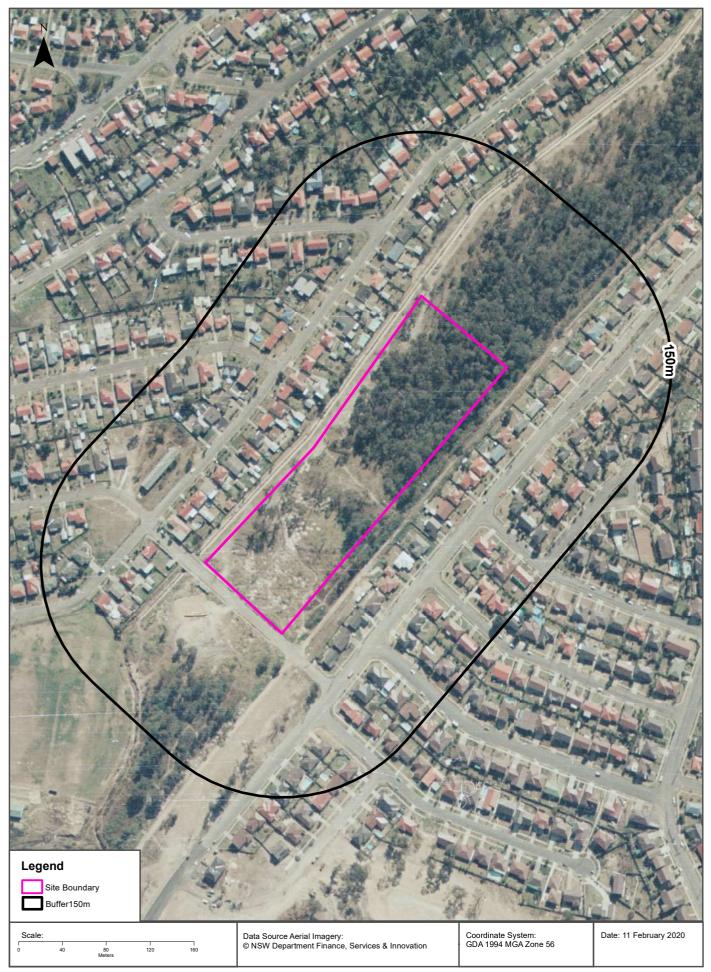
Aerial Imagery 2019 30 Vista Parade, Kotara, NSW 2289

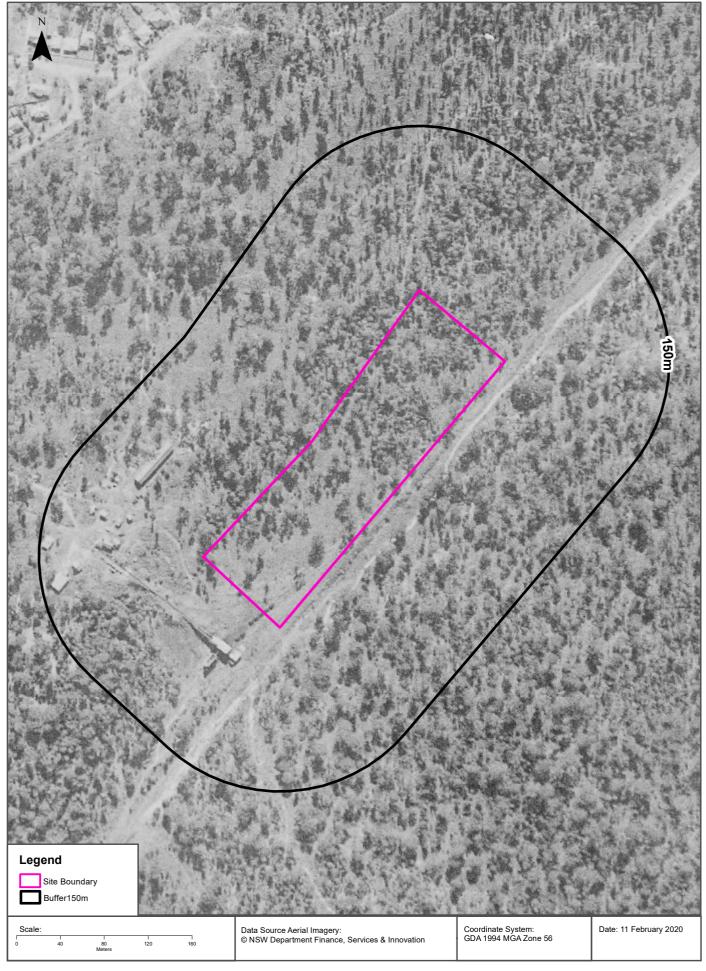
Aerial Imagery 2018 30 Vista Parade, Kotara, NSW 2289

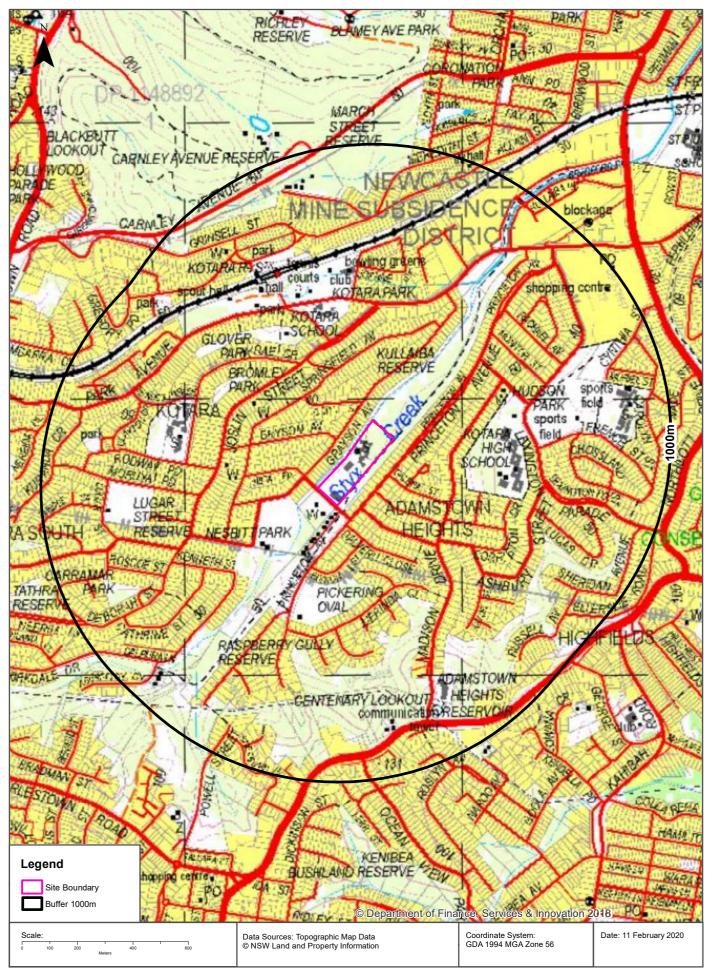

Aerial Imagery 2014

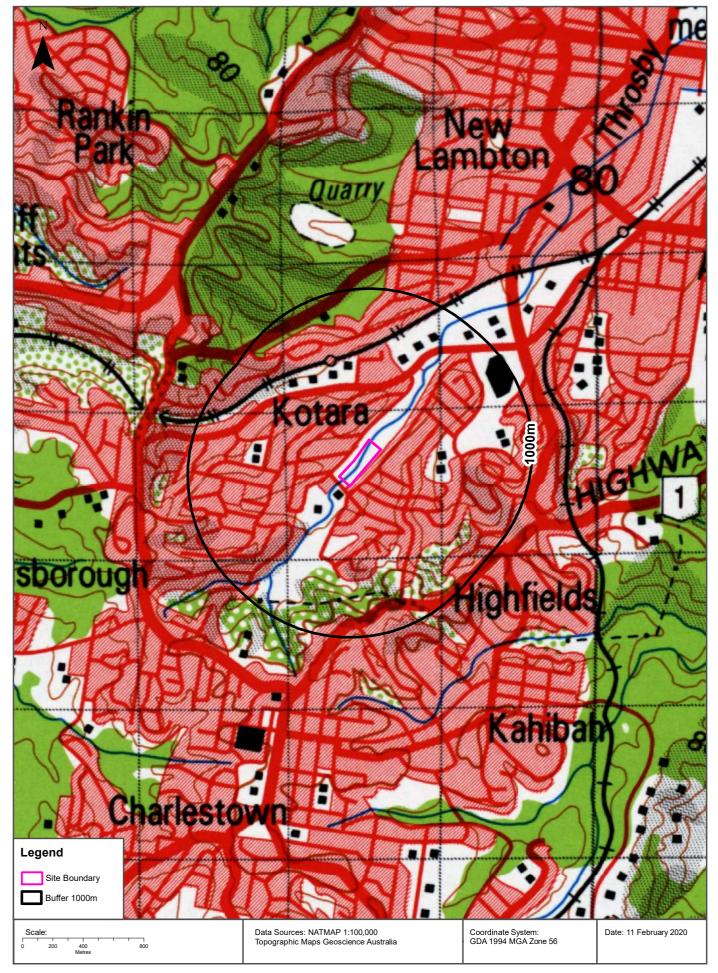


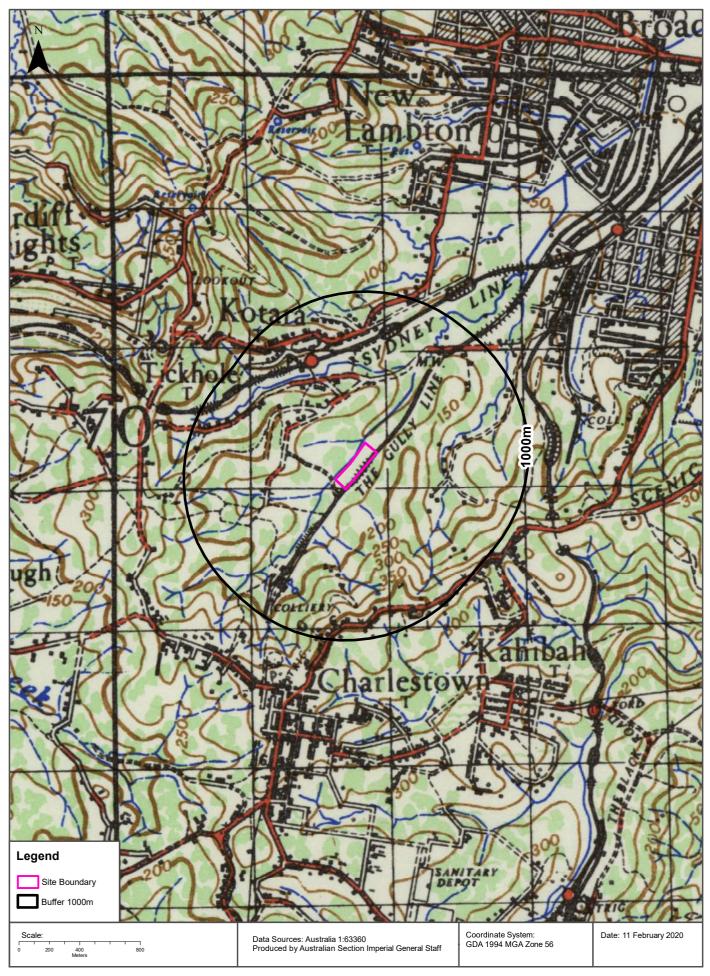
Aerial Imagery 2007 30 Vista Parade, Kotara, NSW 2289

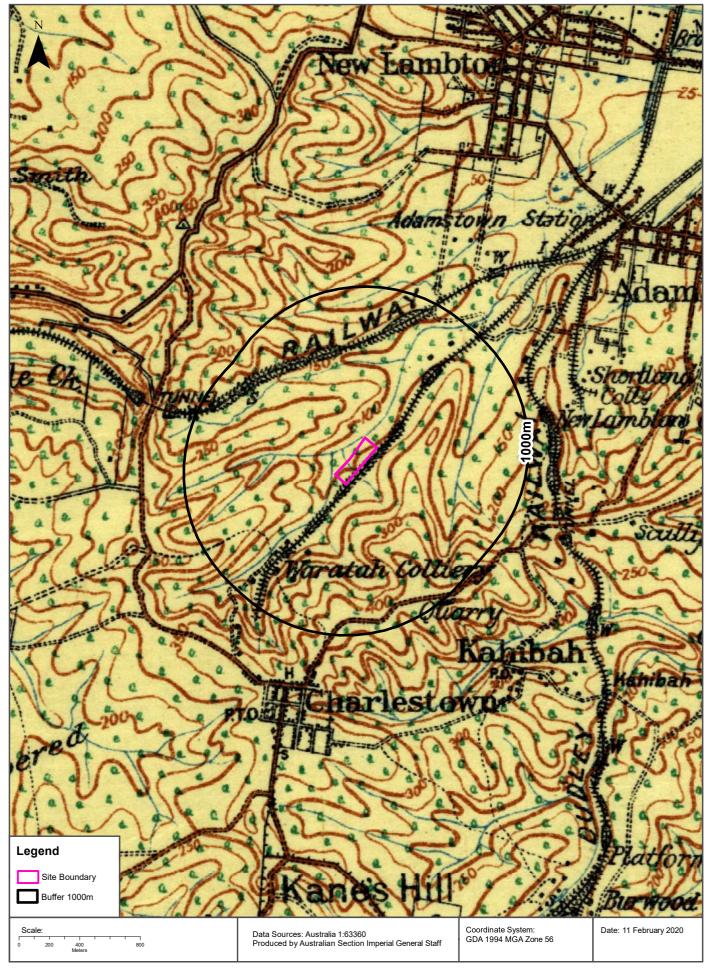


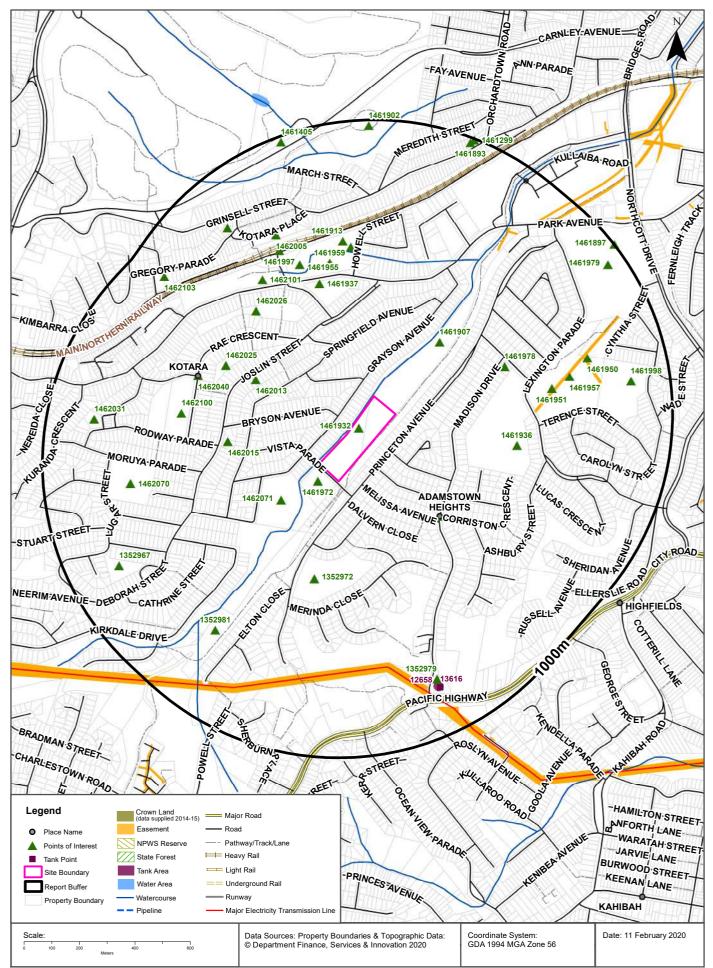





Topographic Map 2015


Historical Map 1981


Historical Map c.1941


Historical Map c.1913

Topographic Features

Topographic Features

30 Vista Parade, Kotara, NSW 2289

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
1461932	Primary School	ST JAMES PRIMARY SCHOOL	Om	Onsite
1461972	Place Of Worship	CATHOLIC CHURCH	51m	South West
1462071	Sports Field	NESBITT PARK	191m	South West
1461907	Park	KULLAIBA RESERVE	301m	North East
1462015	Place Of Worship	ANGLICAN CHURCH	340m	West
1461917	Suburb	ADAMSTOWN HEIGHTS	360m	South East
352972	Sports Field	PICKERING OVAL	363m	South
462013	Place Of Worship	UNITING CHURCH	375m	North West
461978	Place Of Worship	BAPTIST CHURCH	429m	North East
1461936	High School	KOTARA HIGH SCHOOL	452m	East
1461937	Special School	KOTARA SCHOOL	452m	North
462025	Park	BROMLEY PARK	489m	North West
461959	Sports Field	KOTARA PARK	508m	North
462026	Park	GLOVER PARK	526m	North West
462100	Primary School	KOTARA SOUTH PUBLIC SCHOOL	530m	West
462040	Suburb	KOTARA	541m	West
461955	Sports Court	TENNIS COURTS	546m	North
461880	Club	KOTARA BOWLING AND RECREATION CLUB	546m	North
461951	Sports Field	Sports Field	571m	East
461913	Sports Field	BOWLING GREENS	572m	North
1462101	Park	Park	583m	North West
461997	Railway Station	KOTARA RAILWAY STATION	628m	North West
461957	Park	HUDSON PARK	641m	East
462005	Park	Park	682m	North
462070	Sports Field	LUGAR STREET RESERVE	685m	West
352981	Park	RASPBERRY GULLY RESERVE	698m	South West
461950	Sports Field	Sports Field	720m	East
352979	Lookout	CENTENARY LOOKOUT	798m	South
462007	Place Of Worship	UNITING CHURCH	806m	North West
352967	Park	CARRAMAR PARK	812m	South West
462031	Park	Park	828m	West

Map Id	Feature Type	Label	Distance	Direction
1461998	Primary School	BELAIR PUBLIC SCHOOL	857m	East
1462103	Park	Park	868m	North West
1461979	Shopping Centre	WESTFIELD KOTARA	937m	North East
1461405	Parking Area	Parking Area	979m	North
1461902	Park	MARCH STREET RESERVE	979m	North
1461893	Place Of Worship	UNITING CHURCH	981m	North
1461299	Community Facility	NEW LAMBTON UNITING CHURCH HALL	995m	North
1461897	Post Office	KOTARA POST OFFICE	999m	North East

Topographic Data Source: © Land and Property Information (2015) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

30 Vista Parade, Kotara, NSW 2289

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
1265	8 Water	Operational	ADAMSTOWN HEIGHTS RESERVOIR	14/07/2018	806m	South

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
13616	Water	Feature on Previous LPI Tank Area Supply		04/12/2012	830m	South

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
120112903	Primary	Undefined		502m	East
120119219	Primary	Undefined		675m	South West
120119966	Primary	Undefined		691m	North East
120119969	Primary	Undefined		765m	North East
120108952	Primary	Undefined		765m	North East
120116325	Primary	Undefined		866m	North East
120109153	Primary	Undefined		909m	South
120111705	Primary	Undefined		909m	North East

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Topographic Features

30 Vista Parade, Kotara, NSW 2289

State Forest

What State Forest exist within the dataset buffer?

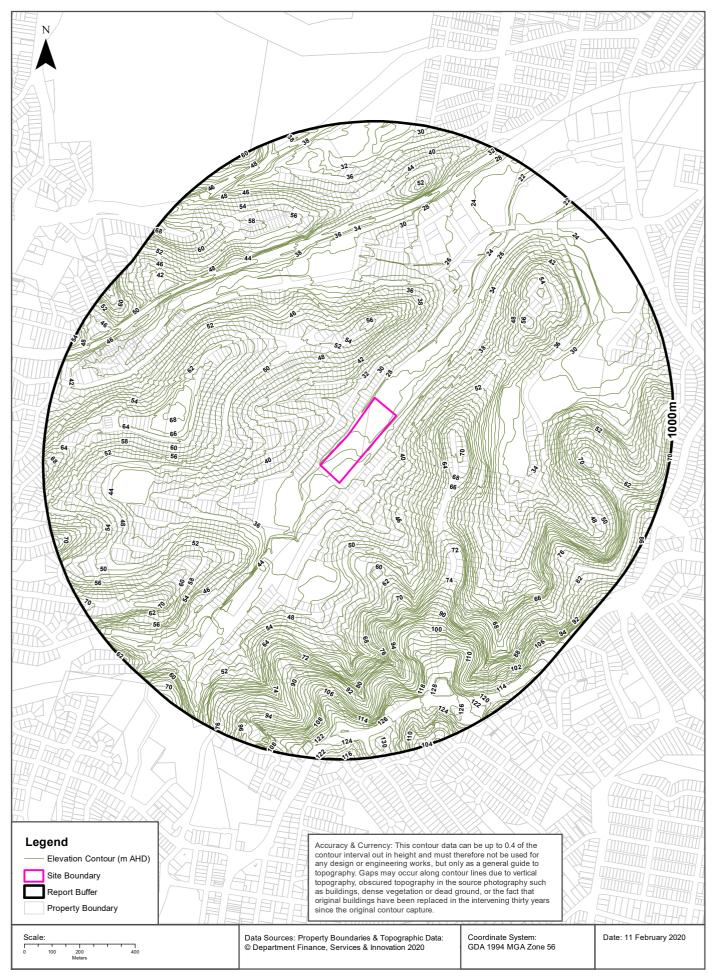
State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?


Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Elevation Contours (m AHD)

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Hydrogeology

Description of aquifers on-site:

Description	
Fractured or fissured, extensive aquifers of low to moderate productivity	
Porous, extensive aquifers of low to moderate productivity	
Description of aquifers within the dataset buffer:	

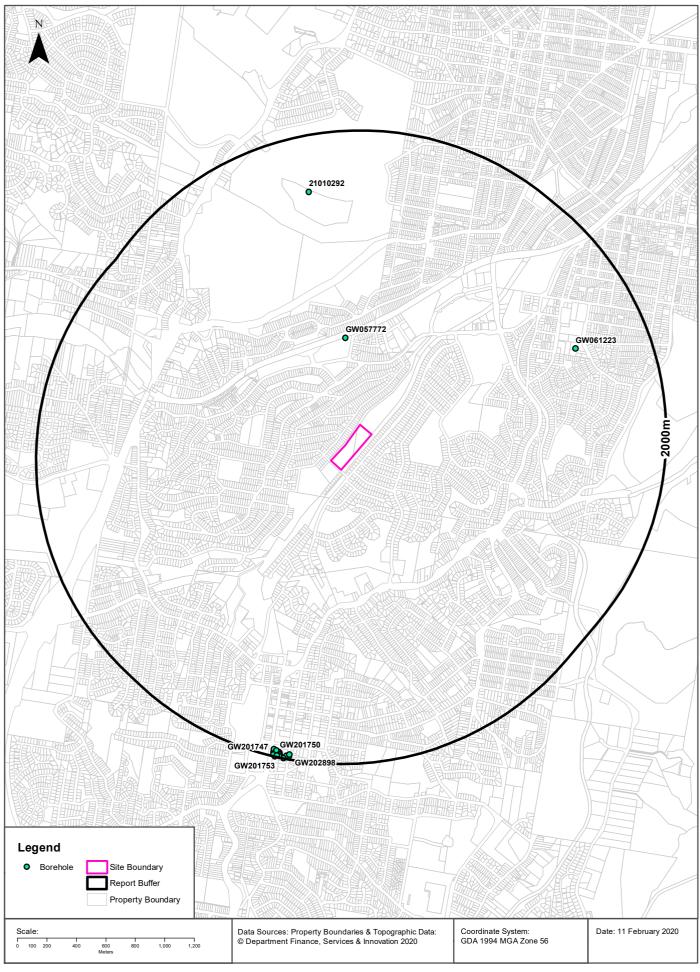
Description

Fractured or fissured, extensive aquifers of low to moderate productivity

Porous, extensive aquifers of low to moderate productivity

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Botany Groundwater Management Zones


Groundwater management zones relating to the Botany Sand Beds aquifer within the dataset buffer:

Management Zone No.	Restriction	Distance	Direction
N/A	No records in buffer		

Botany Groundwater Management Zones Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m)	Elev (AHD)	Dist	Dir
GW057 772	20BL120 210	Bore	Private	Recreation (groundwater)	Recreation (groundwate r)		01/02/1981	24.00	24.00				597m	North
GW061 223	20BL133 110	Bore	Private	Domestic	Domestic		01/06/1985	36.50	36.50	3001- 7000 ppm			1501m	North East
210102 92					UNK							56.27	1618m	North
GW201 757	20BL173 012	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	6.40	6.40		4.90	104.5 7	1952m	South
GW201 758	20BL173 012	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	5.70	5.70		4.80	103.7 6	1958m	South
GW201 749	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	5.50	5.50		3.30	103.5 3	1963m	South
GW202 897	20BL173 546	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW11	14/07/2003	6.00	6.00		2.07	94.76	1966m	South
GW201 751	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	6.00	6.00		3.30	102.1 5	1967m	South
GW201 748	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	5.90	5.90		4.70	103.4 8	1970m	South
GW201 750	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	5.40	5.40		3.50	102.1 6	1971m	South
GW201 747	20BL173 010	Bore	Private	Monitoring Bore	Monitoring Bore		07/01/2009	7.00	7.00		5.00	104.5 9	1971m	South
GW201 755	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	7.40	7.40		3.30	102.1 9	1977m	South
GW202 892	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW17	09/09/2003	6.00	6.00		0.96	92.78	1979m	South
GW202 894	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW21	27/08/2007	5.00	5.00				1979m	South
GW202 888	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW9	22/07/2003	6.00	6.00		1.59	94.96	1980m	South
GW202 898	20BL173 547	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW12	14/07/2003	5.40	5.40		1.27	93.13	1983m	South
GW202 895	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP Charlestow n - MW22	27/08/2007	4.50	4.50				1986m	South
GW201 752	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	6.50	6.50		4.80	104.3 5	1990m	South
GW202 890	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW15	09/09/2003	6.00	6.00		1.69	95.11	1991m	South
GW201 756	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	7.30	7.30		3.20	102.2 3	1991m	South
GW201 754	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		08/12/2009	6.80	6.80		3.30	102.5 1	1991m	South
GW202 891	20BL173 544	Bore	Private	Monitoring Bore	Monitoring Bore	BP - Charlestow n - MW16	09/09/2003	6.00	6.00		1.56	93.96	1999m	South
GW201 753	20BL173 011	Bore	Private	Monitoring Bore	Monitoring Bore		07/12/2009	7.40	7.40		4.50	103.3 4	1999m	South

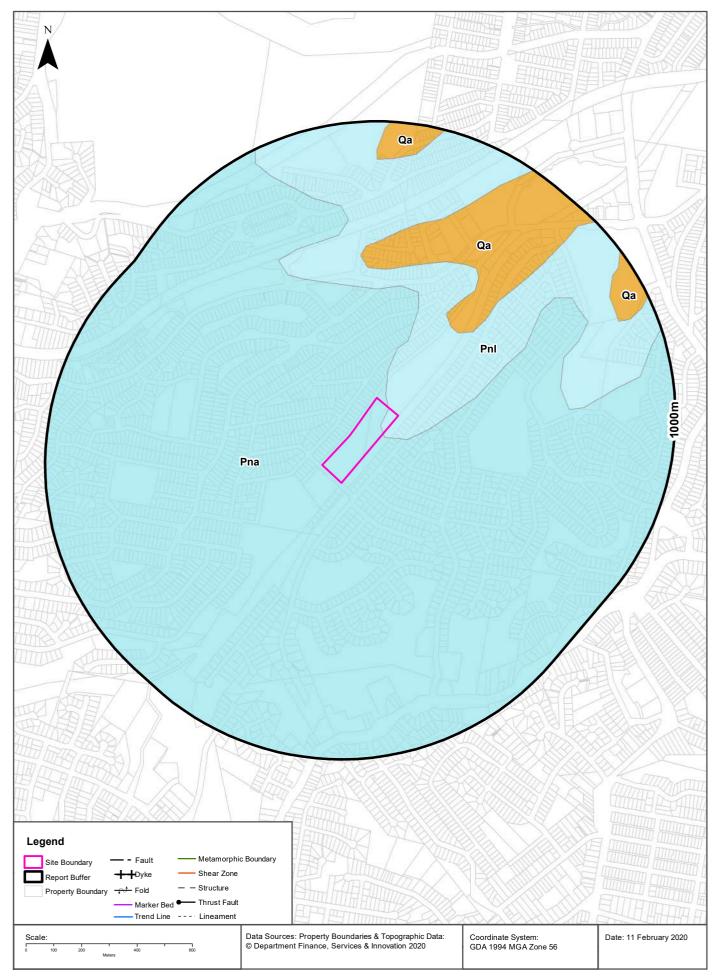
Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

30 Vista Parade, Kotara, NSW 2289

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:


Groundwater No	Drillers Log	Distance	Direction
GW057772	0.00m-0.30m Soil 0.30m-22.00m Clay 22.00m-24.00m Shale Water Bearing	597m	North
GW061223	0.00m-4.87m Fill 4.87m-9.10m Clay 9.10m-14.60m Shale 14.60m-18.28m Sandstone 18.28m-22.80m Coal Water Supply 22.80m-30.17m Conglomerate 30.17m-32.00m Coal Water Supply 32.00m-36.50m Sandstone	1501m	North East
GW201757	0.00m-5.40m Fill; Silty Clay, weathered seam, medium to high plasticity, brown, moist 5.40m-6.10m Conglomerate, cemented, moist 6.10m-6.20m Silty Clay; medium plasticity, pale grey, moist 6.20m-6.40m Conglomerate, cemented, moist	1952m	South
GW201758	0.00m-3.50m Fill; Silty Clay, medium to high plasticity, red/brown, moist 3.50m-5.40m Fill; Silty Clay, as above, wet 5.40m-5.70m Bedrock, wet (Conglomerate?)	1958m	South
GW201749	0.00m-4.20m Fill; Gravelly Silt, low plasticity, dark grey, moist 4.20m-4.80m Silty Clay; medium plasticity, red orange, trace gravel, wet 4.80m-5.50m Conglomerate, cemented, wet	1963m	South
GW202897	0.00m-0.20m Fill; Bitumen 0.20m-0.80m Fill; Bitumen 0.20m-0.80m Fill; Sandy Gravel, brown, moist, poorly graded, fine gravel-coarse sand, high permeability, no HC odour 0.80m-5.20m Clay, Silty; with some fine gravel, red/white/yellow streaking, low plasticity, low permeability, no HC odour 5.20m-6.00m Clay, Silty; with minor gravel below 4.5m, light grey, soft becoming wet below 4.5m, no HC odour, medium permeability	1966m	South
GW201751	0.00m-0.50m Fill; Clayey Sand, fine to medium grained, brown/black, trace cobbles/boulders, moist 0.50m-2.90m Silty Gravelly Clay; medium plasticity, brown/black, moist 2.90m-3.20m Silt, Gravelly Clayey; low plasticity, pale grey, moist 3.20m-5.10m Silt, Gravelly Clayey; as above, wet 5.10m-6.00m Conglomerate, cemented, wet	1967m	South
GW201748	0.00m-4.00m Fill; Silty Clay, medium to high plasticity, red/brown, moist 4.00m-5.90m Fill; Silty Clay, as above, wet	1970m	South
GW201747	0.00m-4.50m Fill; Silty Clay, medium to high plasticity, red/brown, moist 4.50m-5.70m Fill; Silty Clay, as above, wet 5.70m-7.00m Conglomerate, cemented, wet	1971m	South
GW201750	0.00m-2.60m Fill; Gravelly Silt, low plasticity, dark grey, moist 2.60m-3.50m Fill; Silty Gravelly Clay, medium plasticity, red orange, moist 3.50m-4.90m Fill; Silty Gravelly Clay, as above, wet 4.90m-5.40m Conglomerate, cemented, wet	1971m	South
GW201755	0.00m-0.60m Fill; Sand, fine to m edium grained, yellow, sub-angular, trace cobbles/boulders, moist 0.60m-1.90m Clay; medium to high plasticity, grey/brown, moist 1.90m-2.25m Clay; as above, red/brown, moist 2.25m-3.20m Clay; as above, grey/white, moist 3.20m-6.00m Clay; as above, wet 6.00m-6.10m Conglomerate, cemented, wet 6.10m-6.20m Silty Clay; medium plasticity, grey, wet 6.20m-7.40m Conglomerate; cemented, wet	1977m	South
GW202892	0.00m-0.50m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.50m-1.40m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.40m-4.60m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity & permeability, no HC odour 4.60m-5.50m Clay, Silty Sandy; light grey, soft to firm, meidum plasticity, low permeability, no HC odour 5.50m-6.00m Conglomerate; yellow brown, rounded pebble (to 10mm) clasts of shale & sandstone in fine matrix, weak, extremely weather	1979m	South

Groundwater No	Drillers Log	Distance	Direction
GW202894	0.00m-0.20m Clay, Sandy; (topsoil), dark brown, no odour, roots & grass cover present 0.20m-0.80m Clay, Sandy; dark brown, minor gravels, roots present, fine-medium sands, no odour 0.80m-1.50m Clay; Sandy; as above, grading to orange/brown, grading to red/grey @ 1.3m 1.50m-4.30m Clay, Sandy; as above, grading to orange, with ironstone. Minor gravels, some grey @ 2.5m. Gravel to 20mm @ 2.8m 4.30m-5.00m Sandstone, grading to; extremely weathered, minor gravels & rocks to 20mm, no odour	1979m	South
GW202888	0.00m-0.30m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.30m-1.60m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.60m-4.30m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour, increasing sand 4.30m-5.20m Clay, Silty Sandy; light grey, soft to firm, medium plasticity, low permeability, slight HC odour 5.20m-6.00m Conglomerate; yellow brown, rounded pebbles sized (to 10mm) clasts of shale & sandstone in a fine matrix, weak rock, ext	1980m	South
GW202898	0.00m-0.20m Fill; bitumen 0.20m-0.80m Fill; Sandy Gravel, brown, moist, poorly graded, fine gravel-coarse sand, high permeability, no HC odour 0.80m-2.60m Clay, Silty; with fine gravels, red/brown, medium stiff, low plasticity & permeability, no HC odour 2.60m-4.70m Clay, Silty; with fine gravels, light grey, intact, low plasticity, medium permeability, no HC odour 4.70m-5.40m Clay, silty; as above, red/brown, wet, high plasticity, refusal in shale bedrock	1983m	South
GW202895	0.00m-0.50m Fill; Asphalt & concrete 0.50m-0.60m Fill; coarse sand, brown, with gravel to 30mm, no odour, moist/wet 0.60m-1.50m Clay; grey with mottled pale brown, medium plasticity, organic odour, moist/wet 1.50m-3.00m Clay; as above, grading to grey with mottled red, damp/moist @ 2.7m 3.00m-3.50m Clay, Sandy; pale brown, with minor gravels, no odour, moist 3.50m-4.50m Clay, Sandy; as above, grading to dark red with mottled brown/grey, moist. Wet @ base	1986m	South
GW201752	0.00m-4.60m Fill; Silty Clay, medium to high plasticity, red brown, moist 4.60m-4.80m Silty Gravelly Clay; low plasticity, red brown, moist-wet 4.80m-6.20m Silty Gravelly Clay; low plasticity pale grey, wet 6.20m-6.50m Conglomerate, cemented, wet	1990m	South
GW201754	0.00m-0.80m Fill; Silty Gravelly Clay; medium plasticity, red brown, trace cobbles, building debris 0.80m-3.00m Silty Clay; medium plasticity, pale grey, trace gravel 3.00m-4.60m Silty Clay; as above, red orange 4.60m-6.00m Silty Gravelly Clay; low plasticity, orange, red/brown 6.00m-6.80m Conglomerate; cemented	1991m	South
GW201756	0.00m-1.55m Fill; Clayey Sand, fine to medium grained, sub-angular, yellow brown, moist 1.55m-2.70m Silty Clay; medium plasticity, brown, moist 2.70m-2.80m Ironstone/Gravel band 2.80m-4.40m Silty Gravelly Clay; low plasticity, pale grey, wet from 3m 4.40m-5.70m Gravel, Silty Clayey; sub-angular, grey, wet 5.70m-6.20m Conglomerate, wet 6.20m-6.60m Silty Clay, pale grey, wet 6.60m-7.30m Conglomerate, wet	1991m	South
GW202890	0.00m-0.30m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, no HC odour, high permeability 0.30m-1.60m Clay; grey/olive brown, very fine to stiff, intact, low plasticity, low permeability, no HC odour 1.60m-3.80m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour 3.80m-4.80m Clay, Silty Sandy; light grye, soft to firm, meidum plasticity, low permeability, no HC odour 4.80m-6.00m Conglomerate; yellow brown, rounded pebble sized (to10mm) clasts of shale & sandstone in a fine matrix, weak, extremely	1991m	South
GW201753	0.00m-0.90m Fill; Silty Clay, medium plasticity, brown/black, trace gravel, moist 0.90m-4.30m Silty Clay; medium to high plasticity, pale grey & orange, moist 4.30m-6.90m Silty Clay; as above, wet 6.90m-7.40m Conglomerate, cemented, wet	1999m	South
GW202891	0.00m-0.50m Fill; Sandy Gravel, brown, fine gravel to coarse sand, dense, poorly graded, moist, high permeability, no HC odour 0.50m-1.00m Clay; grey/olive brown, very firm to stiff, intact, low plasticity, low permeability, no HC odour 1.00m-3.30m Clay, Silty; red/brown with grey streaking, firm, intact, low plasticity, low permeability, no HC odour 3.30m-4.60m Clay, Silty Sandy; light grey, soft to firm, medium plasticity, low permeability, no HC odour 4.60m-6.00m Conglomerate; yellow brown, rounded pebbles sized (to 10mm) clasts of shale & sandstone in a fine matrix, weak, extremel	1999m	South

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Geology 1:250,000

Geology

30 Vista Parade, Kotara, NSW 2289

Geological Units

What are the Geological Units onsite?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Pna	Conglomerate, sandstone, siltstone, coal, tuff		Newcastle Coal Measures		Palaeozoic			1:250,000
Pnl	Sandstone, siltstone, claystone, coal, tuff	Lambton Subgroup	Newcastle Coal Measures	Lambton Subgroup	Palaeozoic			1:250,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dom Lith	Map Sheet	Dataset
Pna	Conglomerate, sandstone, siltstone, coal, tuff		Newcastle Coal Measures		Palaeozoic			1:250,000
Pnl	Sandstone, siltstone, claystone, coal, tuff	Lambton Subgroup	Newcastle Coal Measures	Lambton Subgroup	Palaeozoic			1:250,000
Qa	Undifferentiated alluvial deposits; sand, silt, clay and gravel; some residual and colluvial deposits. Includes some channel, levee, lacustrine, floodplain and swamp deposits. May include some higher level Tertiary terraces	undifferentiated			Cainozoic			1:250,000

Geological Structures

What are the Geological Structures onsite?

Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Dataset
No features				1:250,000

Geological Data Source : NSW Department of Industry, Resources & Energy

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

30 Vista Parade, Kotara, NSW 2289

Naturally Occurring Asbestos Potential


Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Mining Subsidence District Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

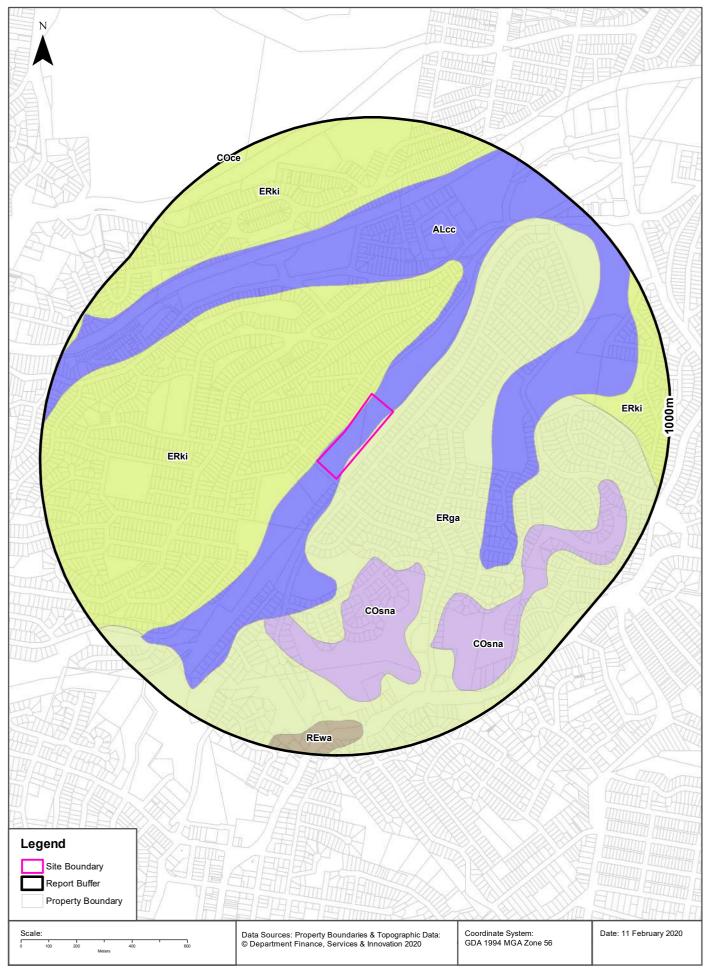
Atlas of Australian Soils

Soils

30 Vista Parade, Kotara, NSW 2289

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:


Map Unit Code	Soil Order	Map Unit Description	Distance
Tb40	Kurosol	Undulating to hilly areas with some steep slopes and cliffs, rock outcrops, and narrow terraced valleys: chief soils are hard acidic yellow mottled soils (Dy3.41) with some shallow soils such as (Um4.1) and (Uc4.1) on the steeper slopes. Associated are: (Gn2.2) soils and (Dd1) soils, both of which occur on slopes; undescribed soils in the valleys; and some (Dy5) and (Uc1.2) soils along the coast. As mapped, small areas of units Gb10 and Cb28 are included.	0m

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes

Soils

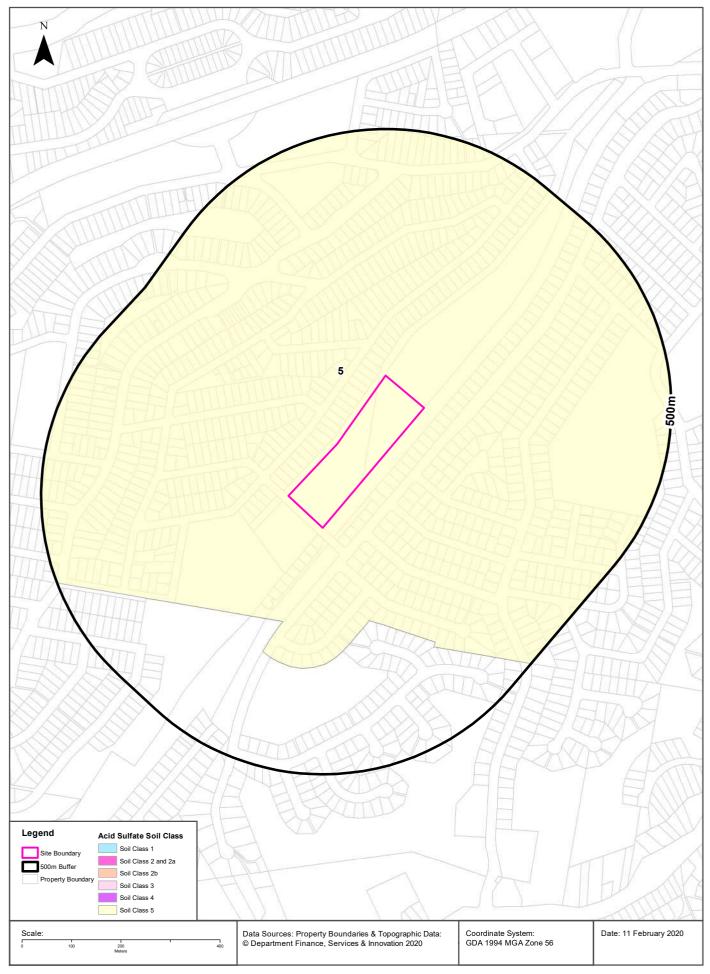
30 Vista Parade, Kotara, NSW 2289

Soil Landscapes

What are the onsite Soil Landscapes?

Soil Code	Name	Group	Process	Map Sheet	Scale
ALcc	COCKLE CREEK		ALLUVIAL	Newcastle	1:100,000
ERga	GATESHEAD		EROSIONAL	Newcastle	1:100,000
ERki	KILLINGWORTH		EROSIONAL	Newcastle	1:100,000

What are the Soil Landscapes within the dataset buffer?


Soil Code	Name	Group	Process	Map Sheet	Scale
ALcc	COCKLE CREEK		ALLUVIAL	Newcastle	1:100,000
COce	CEDAR HILL		COLLUVIAL	Newcastle	1:100,000
COsna	STOCKRINGTON variant a		COLLUVIAL	Newcastle	1:100,000
ERga	GATESHEAD		EROSIONAL	Newcastle	1:100,000
ERki	KILLINGWORTH		EROSIONAL	Newcastle	1:100,000
REwa	WARNERS BAY		RESIDUAL	Newcastle	1:100,000

Soils Landscapes Data Source : NSW Office of Environment and Heritage

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Acid Sulfate Soils

Acid Sulfate Soils

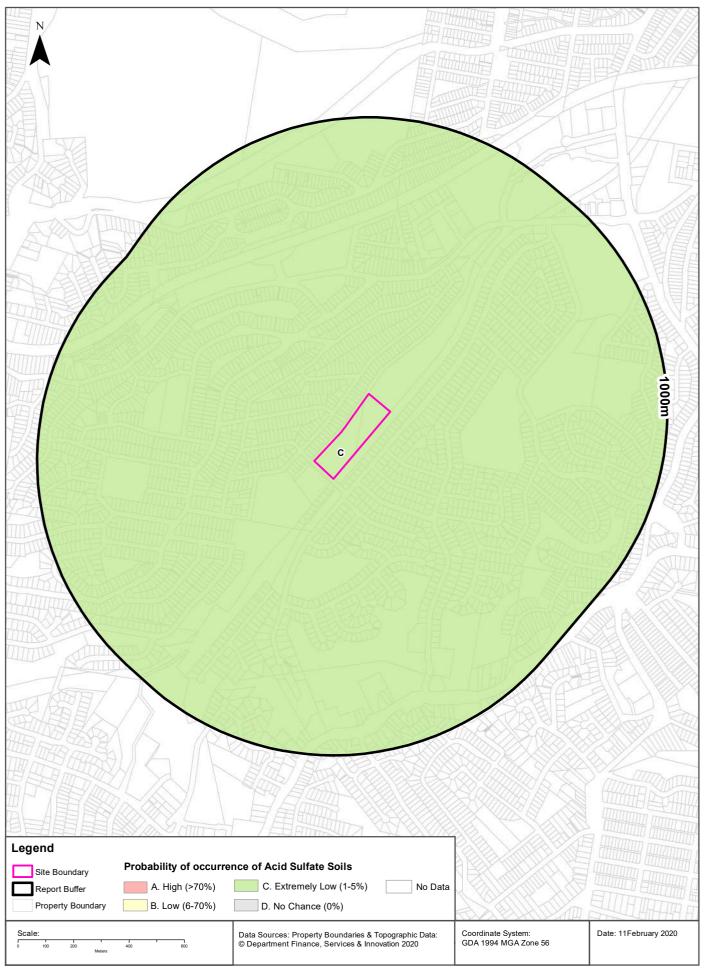
30 Vista Parade, Kotara, NSW 2289

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
5	Works within 500 metres of adjacent Class 1, 2, 3, or 4 land that is below 5 metres AHD and by which the watertable is likely to be lowered below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land, present an environmental risk	Newcastle Local Environmental Plan 2012

If the on-site Soil Class is 5, what other soil classes exist within 500m?


Soil Class	Description	EPI Name	Distance	Direction
None				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

30 Vista Parade, Kotara, NSW 2289

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	0m

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

30 Vista Parade, Kotara, NSW 2289

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

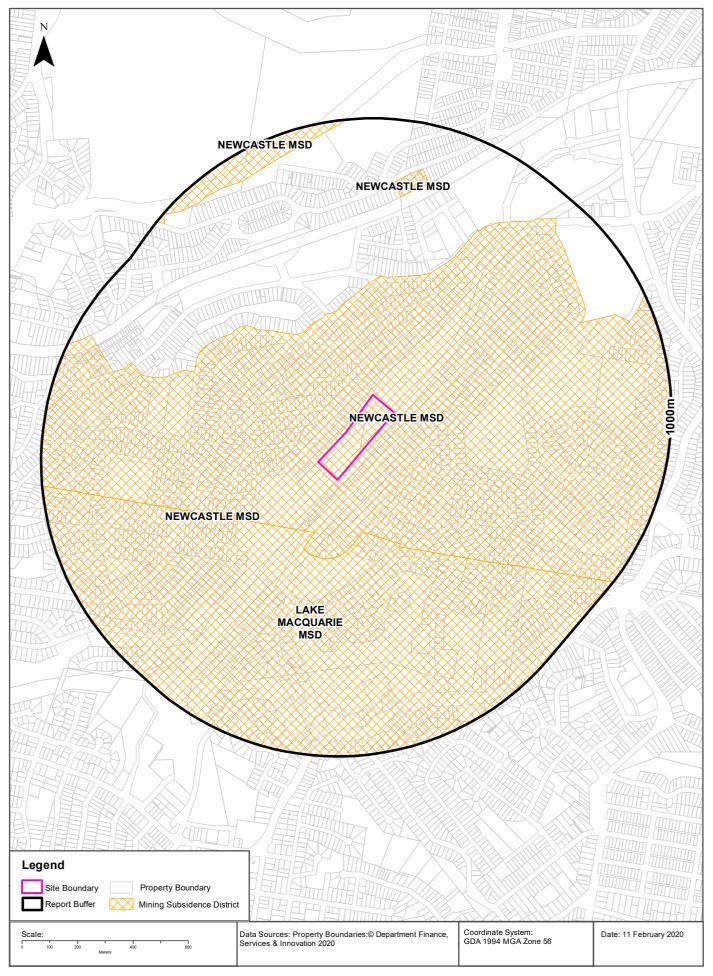
Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A	N/A	N/A

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Dryland Salinity Potential of Western Sydney


Dryland Salinity Potential of Western Sydney within the dataset buffer?

Feature Id	Classification	Description	Distance	Direction
N/A	Outside Data Coverage			

Dryland Salinity Potential of Western Sydney Data Source : NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining Subsidence Districts

Mining Subsidence Districts

30 Vista Parade, Kotara, NSW 2289

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

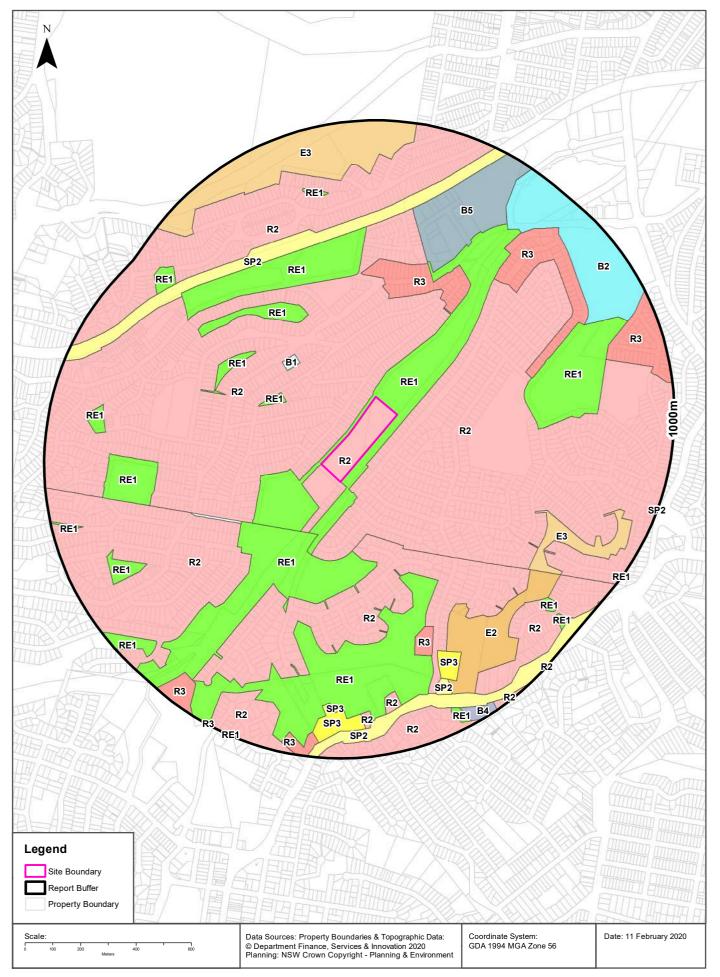
District	Distance	Direction
NEWCASTLE	0m	Onsite
LAKE MACQUARIE	207m	South West
NEWCASTLE	355m	North West

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

State Environmental Planning Policy

30 Vista Parade, Kotara, NSW 2289

State Significant Precincts


What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No Records in Buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

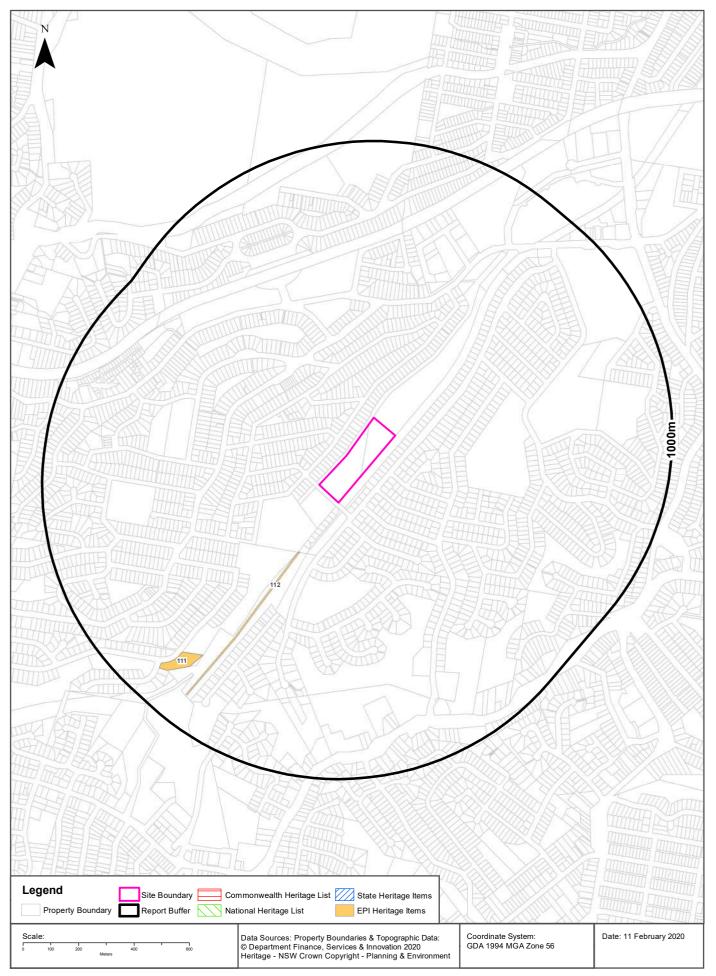
EPI Planning Zones

Environmental Planning Instrument

30 Vista Parade, Kotara, NSW 2289

Land Zoning

What EPI Land Zones exist within the dataset buffer?


Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		0m	Onsite
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		0m	North East
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		13m	West
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		29m	East
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		207m	South West
Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		210m	South
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		246m	North West
Neighbourhood Centre		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		295m	North West
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		358m	North
Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		361m	South West
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		372m	South
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		385m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		426m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		446m	North West
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		462m	East
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		487m	North East
Business Development		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		494m	North East
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		590m	West
Infrastructure	Railway	Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		592m	North West
Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		604m	South
Environmental Conservation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		606m	South East
Environmental Management		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		608m	South East
Low Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		632m	North
Tourist		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		703m	South
Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		726m	South West
Local Centre		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		747m	North East
Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		752m	North
Medium Density Residential		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		779m	East
	Icour Density ResidentialPublic RecreationIcow Density ResidentialIcow Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationRedium Density ResidentialPublic RecreationIcow Density ResidentialPublic RecreationPublic RecreationInfrastructureRedium Density ResidentialReclium Density ResidentialInfrastructureInfrastructureIcow Density ResidentialIcow Density ResidentialPublic RecreationInfrastructurePublic RecreationInfusionInfusionInfusionInfusionIcow Density ResidentialPublic RecreationIcou Density ResidentialPublic RecreationIcou Density ResidentialPublic RecreationIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Density ResidentialIcou Den	IntersectionIntersectionLow Density ResidentialIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionLow Density ResidentialIntersectionPublic RecreationIntersectionNeighbourhood CentreIntersectionMedium Density ResidentialIntersectionPublic RecreationIntersectionPublic Recreation <td< td=""><td>Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2014Public RecreationNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Nedium Density ResidentialNewcastle Local Environmental Plan 2012IndrastructureRailwayNewcastle Local</td><td>Low Density ResidentialNew Revironmental Plan 201215/06/2012 15/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 15/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201412/09/2014Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/2012Medium Density ResidentialNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06</td><td>DateDateDateLow Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationLake Macquarie Local Environmental Plan 201110/10/2014Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/201215/06/2012Velip RecreationLake Macquarie Local Environmental Plan 201112/09/201410/10/2014Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012<td>Interview Networksite Local Environmental Plan 2012 Date Date Date Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Dublic Recreation Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Lake Macquarie Local Environmental Plan 2014 12/09/2014 10/10/2014 06/12/2019 Low Density Residential Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Neighbourhood Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Medium Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmenta</td><td>DateDateDateDateDateLew Density Residential1Newcastle Local Environmental Plan 201215/06/201215/06/201213/09/2019Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Lew Density Residential1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Lake Macquarie Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201215/06/201213/09/20191Neugraburchal Plan 201315/06/201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201315/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201315/06/</td><td>Jow Density ResidentialInternational plan 2012 Environmental Plan 2012 Environmental Plan 2012 Environmental Plan 2012Stole 2012 1506/2012Stole 2012 1506/2012<</br></td></td></td<>	Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2014Public RecreationNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Low Density ResidentialNewcastle Local Environmental Plan 2012NeighbourhoodLake Macquarie Local Environmental Plan 2012Public RecreationLake Macquarie Local Environmental Plan 2012Public RecreationNewcastle Local Environmental Plan 2012Nedium Density ResidentialNewcastle Local Environmental Plan 2012IndrastructureRailwayNewcastle Local	Low Density ResidentialNew Revironmental Plan 201215/06/2012 15/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 15/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201412/09/2014Public RecreationNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/2012Medium Density ResidentialNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012NeighbourhoodNewcastle Local Environmental Plan 201115/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06	DateDateDateLow Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201215/06/201215/06/2012Low Density ResidentialNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationLake Macquarie Local Environmental Plan 201110/10/2014Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201115/06/201215/06/2012NeighbourhoodNewcastle Local Environmental Plan 201215/06/201215/06/2012Velip RecreationLake Macquarie Local Environmental Plan 201112/09/201410/10/2014Public RecreationNewcastle Local Environmental Plan 201215/06/201215/06/2012Public RecreationNewcastle Local Environmental Plan 201215/06/2012 <td>Interview Networksite Local Environmental Plan 2012 Date Date Date Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Dublic Recreation Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Lake Macquarie Local Environmental Plan 2014 12/09/2014 10/10/2014 06/12/2019 Low Density Residential Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Neighbourhood Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Medium Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmenta</td> <td>DateDateDateDateDateLew Density Residential1Newcastle Local Environmental Plan 201215/06/201215/06/201213/09/2019Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Lew Density Residential1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Lake Macquarie Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201215/06/201213/09/20191Neugraburchal Plan 201315/06/201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201315/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201315/06/</td> <td>Jow Density ResidentialInternational plan 2012 Environmental Plan 2012 Environmental Plan 2012 Environmental Plan 2012Stole 2012 1506/2012Stole 2012 1506/2012<</br></td>	Interview Networksite Local Environmental Plan 2012 Date Date Date Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Dublic Recreation Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Low Density Residential Lake Macquarie Local Environmental Plan 2014 12/09/2014 10/10/2014 06/12/2019 Low Density Residential Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Neighbourhood Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Medium Density Residential Newcastle Local Environmental Plan 2012 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmental Plan 2011 15/06/2012 15/06/2012 13/09/2019 Public Recreation Newcastle Local Environmenta	DateDateDateDateDateLew Density Residential1Newcastle Local Environmental Plan 201215/06/201215/06/201213/09/2019Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Lew Density Residential1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Lake Macquarie Local Environmental Plan 201215/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201215/06/201213/09/20191Neugraburchal Plan 201315/06/201215/06/201213/09/20191Public RecreationNewcastle Local Environmental Plan 201315/06/201213/09/20191Public Recreation1Newcastle Local Environmental Plan 201315/06/	Jow Density ResidentialInternational plan 2012 Environmental Plan 2012 Environmental Plan 2012

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		782m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		786m	South East
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		788m	West
E3	Environmental Management		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		792m	North
SP2	Infrastructure	Infrastructure	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		797m	South
SP3	Tourist		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		801m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		802m	South
SP3	Tourist		Lake Macquarie Local Environmental Plan 2014	17/07/2015	17/07/2015	06/12/2019	Amendment No 2	818m	South
SP2	Infrastructure	Infrastructure	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		819m	South West
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		826m	North West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		827m	South East
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		835m	South
R2	Low Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		868m	South East
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		889m	South West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		890m	West
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		905m	South East
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		909m	South
R3	Medium Density Residential		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		910m	South
B4	Mixed Use		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		922m	South East
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		987m	South
RE1	Public Recreation		Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		988m	South East
SP2	Infrastructure	Classified Road	Newcastle Local Environmental Plan 2012	15/06/2012	15/06/2012	13/09/2019		992m	North
RE1	Public Recreation		Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	06/12/2019		996m	South East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage Items

Heritage

30 Vista Parade, Kotara, NSW 2289

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

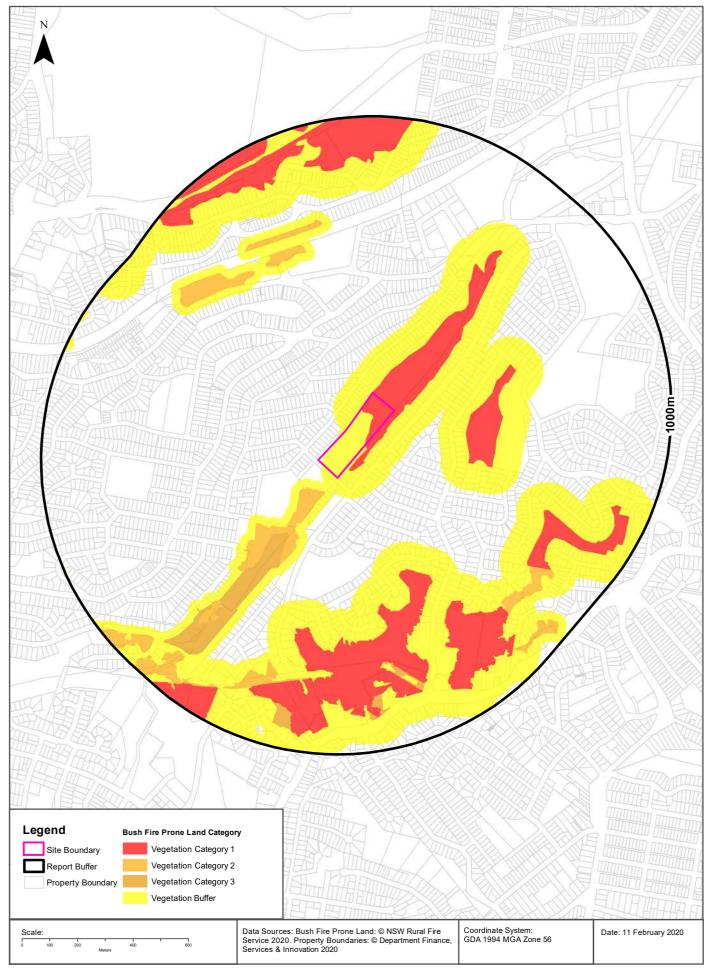
What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?


Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
112	Raspberry Gully Line Railway	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	24/11/2017	229m	South West
111	South Waratah Colliery	Item - General	Local	Lake Macquarie Local Environmental Plan 2014	12/09/2014	10/10/2014	24/11/2017	737m	South West

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

30 Vista Parade, Kotara, NSW 2289

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Buffer	0m	Onsite
Vegetation Category 1	Om	Onsite
Vegetation Category 2	66m	South West
Vegetation Category 3	265m	South West

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

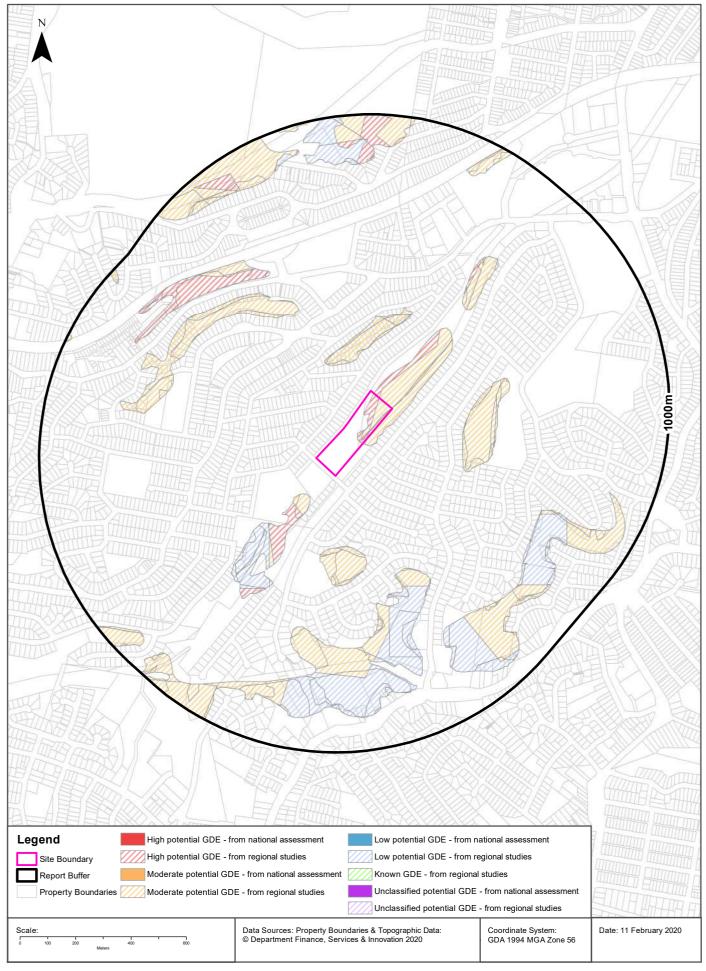
Lower Hunter and Central Coast Regional Vegetation Survey

What vegetation from the Lower Hunter and Central Coast Regional Survey exists within the dataset buffer?

Map Id	Unit Desc	Canopy Code	Canopy Cover	Species	Distance	Direction
5	Alluvial Tall Moist Forest	OF	Mid Dense (Open Forest) 50- <100% cover	E. saligna / S. glomulifera / Glochidion ferdinandi	0m	Onsite
30	Coastal Plains Smooth- barked Apple Woodland	OF	Mid Dense (Open Forest) 50- <100% cover	A. costata / C. gummifera / E. capitellata / E. umbra	0m	Onsite
15	Coastal Foothills Spotted Gum - Ironbark Forest	OF	Mid Dense (Open Forest) 50- <100% cover	C. maculata / E. umbra / E. siderophloia	284m	South
6	Coastal Narrabeen Moist Forest	OF	Mid Dense (Open Forest) 50- <100% cover	S. glomulifera / E. saligna / E. acmenoides	448m	South
5	Alluvial Tall Moist Forest	WO	Sparse (Woodland) 20-<50% cover	E. saligna / S. glomulifera / Glochidion ferdinandi	682m	North East
30	Coastal Plains Smooth- barked Apple Woodland	WO	Sparse (Woodland) 20-<50% cover	A. costata / C. gummifera / E. capitellata / E. umbra	707m	North East

Lower Hunter and Central Coast Regional Vegetation Survey: NSW Office of Environment and Heritage

Ramsar Wetlands


What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Environment

Ecological Constraints - Groundwater Dependent Ecosystems Atlas

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	High potential GDE - from regional studies	Deeply dissected sandstone plateaus.	Vegetation		0m
Terrestrial	High potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	Moderate potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	Low potential GDE - from regional studies	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		289m

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

Inflow Dependent Ecosystems Likelihood

Туре	IDE Likelihood	Geomorphology	Ecosystem Type	Aquifer Geology	Distance
Terrestrial	2	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	5	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	6	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	8	Deeply dissected sandstone plateaus.	Vegetation		0m
Terrestrial	10	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		0m
Terrestrial	3	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		124m
Terrestrial	4	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		127m
Terrestrial	1	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		174m
Terrestrial	7	Undulating to low hilly country on weak rocks, with alluvial and sandy littoral plains.	Vegetation		252m
Terrestrial	9	Plateau flank dissected into narrow strike ridges and valleys.	Vegetation		469m

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

30 Vista Parade, Kotara, NSW 2289

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Litoria aurea	Green and Golden Bell Frog	Endangered	Not Sensitive	Vulnerable	
Animalia	Amphibia	Litoria olongburensis	Olongburra Frog	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Amphibia	Pseudophryne australis	Red-crowned Toadlet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Actitis hypoleucos	Common Sandpiper	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Amaurornis moluccana	Pale-vented Bush-hen	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anas querquedula	Garganey	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Anous stolidus	Common Noddy	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	Rokamba;camba; Jamba
Animalia	Aves	Ardea ibis	Cattle Egret	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna carneipes	Flesh-footed Shearwater	Vulnerable	Not Sensitive	Not Listed	Rokamba;Jamba
Animalia	Aves	Ardenna grisea	Sooty Shearwater	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Ardenna pacificus	Wedge-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ardenna tenuirostris	Short-tailed Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Arenaria interpres	Ruddy Turnstone	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Artamus cyanopterus cyanopterus	Dusky Woodswallow	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Calidris acuminata	Sharp-tailed Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris canutus	Red Knot	Not Listed	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris ferruginea	Curlew Sandpiper	Endangered	Not Sensitive	Critically Endangered	Rokamba;Camba; Jamba
Animalia	Aves	Calidris melanotos	Pectoral Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Calidris ruficollis	Red-necked Stint	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calidris tenuirostris	Great Knot	Vulnerable	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Calonectris leucomelas	Streaked Shearwater	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Calyptorhynchus Iathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Charadrius leschenaultii	Greater Sand- plover	Vulnerable	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Charadrius mongolus	Lesser Sand- plover	Vulnerable	Not Sensitive	Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Chlidonias leucopterus	White-winged Black Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Diomedea exulans	Wandering Albatross	Endangered	Not Sensitive	Endangered	JAMBA
Animalia	Aves	Egretta sacra	Eastern Reef Egret	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Epthianura albifrons	White-fronted Chat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Falco hypoleucos	Grey Falcon	Endangered	Category 2	Not Listed	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Fregata ariel	Lesser Frigatebird	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Gelochelidon nilotica	Gull-billed Tern	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus fuliginosus	Sooty Oystercatcher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus longirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	САМВА
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hirundo rustica	Barn Swallow	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	CAMBA;JAMBA
Animalia	Aves	Irediparra gallinacea	Comb-crested Jacana	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Limicola	Broad-billed Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limnodromus semipalmatus	Asian Dowitcher	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa lapponica	Bar-tailed Godwit	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Limosa limosa	Black-tailed Godwit	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Lophochroa leadbeateri	Major Mitchell's Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Macronectes giganteus	Southern Giant Petrel	Endangered	Not Sensitive	Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Macronectes halli	Northern Giant- Petrel	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Merops ornatus	Rainbow Bee- eater	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Motacilla flava	Yellow Wagtail	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Neophema pulchella	Turquoise Parrot	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox connivens	Barking Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius madagascariensi s	Eastern Curlew	Not Listed	Not Sensitive	Critically Endangered	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Oxyura australis	Blue-billed Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Phaethon rubricauda	Red-tailed Tropicbird	Vulnerable	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Philomachus pugnax	Ruff	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Plegadis falcinellus	Glossy Ibis	Not Listed	Not Sensitive	Not Listed	CAMBA
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pluvialis squatarola	Grey Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Pomatostomus temporalis temporalis	Grey-crowned Babbler (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pterodroma solandri	Providence Petrel	Vulnerable	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Ptilinopus magnificus	Wompoo Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Rostratula australis	Australian Painted Snipe	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Stagonopleura guttata	Diamond Firetail	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Stercorarius parasiticus	Arctic Jaeger	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Sternula albifrons	Little Tern	Endangered	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sula dactylatra	Masked Booby	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Thalassarche cauta	Shy Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalassarche melanophris	Black-browed Albatross	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thinornis rubricollis	Hooded Plover	Critically Endangered	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Todiramphus chloris	Collared Kingfisher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tringa brevipes	Grey-tailed Tattler	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa glareola	Wood Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tringa stagnatilis	Marsh Sandpiper	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Xenus cinereus	Terek Sandpiper	Vulnerable	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Insecta	Petalura gigantea	Giant Dragonfly	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus forsteri	New Zealand Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Arctocephalus pusillus doriferus	Australian Fur- seal	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Dugong dugon	Dugong	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Eubalaena australis	Southern Right Whale	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Macropus dorsalis	Black-striped Wallaby	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Megaptera novaeangliae	Humpback Whale	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Nyctophilus bifax	Eastern Long- eared Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Antaresia stimsoni	Stimson's Python	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia		Woma	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Caretta caretta	Loggerhead Turtle	Endangered	Not Sensitive	Endangered	
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Diplodactylus platyurus	Eastern Fat-tailed Gecko	Endangered	Not Sensitive	Not Listed	
Animalia	Reptilia	Eretmochelys imbricata	Hawksbill Turtle	Not Listed	Not Sensitive	Vulnerable	
Animalia	Reptilia	Uvidicolus sphyrurus	Border Thick- tailed Gecko	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Angophora inopina	Charmhaven Apple	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Callistemon linearifolius	Netted Bottle Brush	Vulnerable	Category 3	Not Listed	
Plantae	Flora	Chamaesyce psammogeton	Sand Spurge	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Davidsonia jerseyana	Davidson's Plum	Endangered	Category 2	Endangered	
Plantae	Flora	Diuris praecox	Rough Doubletail	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Epacris purpurascens var. purpurascens		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus camfieldii	Camfield's Stringybark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus nicholii	Narrow-leaved Black Peppermint	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Eucalyptus parramattensis subsp. parramattensis		Endangered Population	Not Sensitive	Not Listed	
Plantae	Flora	Eucalyptus scoparia	Wallangarra White Gum	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea parviflora subsp. parviflora	Small-flower Grevillea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Grevillea shiressii		Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Melaleuca biconvexa	Biconvex Paperbark	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Muehlenbeckia costata	Scrambling Lignum	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Phaius australis	Southern Swamp Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Pultenaea maritima	Coast Headland Pea	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rutidosis heterogama	Heath Wrinklewort	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Senecio spathulatus	Coast Groundsel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tetratheca glandulosa		Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Tetratheca juncea	Black-eyed Susan	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Zannichellia palustris		Endangered	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species.

NSW BioNet: $\ensuremath{\mathbb{C}}$ State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise match	Georeferenced to the site location / premise or part of site
General area or suburb match	Georeferenced with the confidence of the general/approximate area
Road match	Georeferenced to the road or rail
Road intersection	Georeferenced to the road intersection
Feature is a buffered point	Feature is a buffered point
Land adjacent to geocoded site	Land adjacent to Georeferenced Site
Network of features	Georeferenced to a network of features

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any

of its Third Party Content Supplier have any liability to it under or in connection with the Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Annex E

V	AL	_	

Y/CIVILAB	CI
iolechnical & Environmental Services	PRO

BOREHOLE LOG REPORT

HOLE NO: BH4 FILE / JOB NO: P1678 SHEET: 1 OF 1

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION: SURFACE ELEVATION: INCLINATION: 90° DRILLING METHOD: Trailer mounted drill rig CONTRACTOR: DRILLER: RB DATE LOGGED: 07/02/2019 DATE SAMPLED: 07/02/2019 LOGGED BY: DS CHECKED BY:

		CP	& SAMPLING					c		MATERIAL				
Water	Depth (m)	Blows	Field Tests	Samples	Depth (m)	Graphic	Log	Classification Symbol	Soil T	MATERIAL DESCRIPTION ype, Plasticity or Particle Characteristic, (Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Densitv	STRUCTURE & Other Observations
	()			ES \ <u>0.15-0.25</u> /	-	×		SW	0.02m FILL: 0.25m FILL: fine to	ASPHALT Seal Silty Gravelly SAND, fine to coarse grain o coarse gravel	/	M	D	FILL ROCK
				ES \ <u>0.50-0.60</u> /	- - 1.0—			сн	\gr <u>ain</u> e	mely Weathered SANDSTONE, fine to m ad, grey, inferred extremely low strength CLAY, high plasticity, dark grey / black, wi ents	/			ALLUVIUM
				ES ∖ <u>1.20-1.30</u> /	-			сн	1.20m As ab	ove, becoming grey, trace coal fragment				
					- 2.0—				1.80m Silty S fine g	Sandy CLAY. high plasticity, grey / mottle rained sand	d orange,	>PL		RESIDUAL SOIL
					-			СН					VSt	
					- 				3.00m					
					-				Termi	nated at 3.00 m				
					-									
					-									
					4.0									
					-									
					-									
					5.0 —									
					-									
					-									
					- 6.0 —									
					-									
					-									
					-									
					7.0									
					-									
					-									
					8.0 —									
					-									
					-									
					9.0 —									
					-									
					-									
					-						1			
		Addition	al Comments			SOIL	DES		YMBOLS & PTION	SAMPLES & FIELD TESTS U - Undisturbed Sample	D - Dr		Ë	CONSISTENCY/ RELATIVE DENSITY
					(system	D - Disturbed Sample ES - Environmental Sample	M - Mo W - W	et	low D'	VS - Very Soft S - Soft F - Firm
							WA	TER		B - Bulk Disturbed Sample MC - Moisture Content	<pl -="" ma<br="">~PL - Ma >PL - Ma</pl>	oist, ap	prox. F	L St - Stiff VSt - Very Stiff
					.	\leq	-	Wate	r table	MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration Test	>PL - Mo ~LL - W >LL - W	et, app	rox. LL	
							-	Wate	r inflow	VS - Vane Shear	PL - Pla	astic Li	mit	MD - Medium Dense D - Dense VD - Very Dense
											LL - Lio	Juid Lii	nit	

File: P1678 BH4 1 OF 1

V	A	L	L	. E
50	6	3.	/	

Г

BOREHOLE LOG REPORT

HOLE NO: BH5 FILE / JOB NO: P1678 SHEET: 1 OF 1

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mounted	drill rig	CONTRACTOR:	DRILLER: RB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: DS	CHECKED BY:

	T	ESTING	& SAMPLING						MATERIAL				
Water	DC AS 1289.6. Depth (m)		Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil T	MATERIAL DESCRIPTION ype, Plasticity or Particle Characteristic, Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Densitv	STRUCTURE & Other Observations
	0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 1.0 - 1.1 1.1 - 1.2 1.2 - 1.3 1.3 - 1.4 1.4 - 1.5	4 2 1 2 2 4 8 8		ES \0.10-0.20 ES 0.80-1.10 ES \1.20-1.30	- - - 1.0 -		SM GP ML	0.40m FILL: SANE Sand medit	Silty SAND, fine to medium grained, gre GRAVEL, fine to medium, grey / brown b, fine grained, grey / brown y SILT, low plasticity, dark brown, with fi m gravel	with silty	D - M D D - M	F	FILL
	1.5 - 1.6	11 Terminated			- 2.0- - - 3.0-		ਟਸ ਟਸ	2.80m 3.00m Silty 5 3.10m Becor	CLAY, high plasticity, brown	/	>PL	VSt - H	RESIDUAL SOIL
					- - 4.0 -			/ brow 4.30m	nely Weathered SANDSTONE, fine gra n, inferred very low strength al at 4.30 m	ined, orange			
					- 5.0 — - -								
					6.0 — - - 7.0 —								
					- - - 8.0 -								
					- 9.0 - - -								
		Additiona	al Comments		:	SIFICAT SOIL DE Based Classifica	SCRIF on Un	ified	SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental Sample	D - Dr M - Mo W - W	oist et		CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm
						w/		r table r inflow	B - Bulk Disturbed Sample MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration Test VS - Vane Shear	<pl -="" ma<br="">~PL - Ma >PL - Ma ~LL - W >LL - W PL - Pi LL - Lia</pl>	oist, ap oist, ab et, app et, abc astic Li	prox. F ove PL prox. LL ove LL mit mit	L St - Stiff VSt - Very Stiff H - Hard

File: P1678 BH5 1 OF 1

	Æ		
1	V	AL	LE
	1	3	Geo

BOREHOLE LOG REPORT

VĄ	LLEY/ Geolechnik		PROJECT :	Propos	ed Sch	aU loor	arade	and - Newcastle es , 30 Vista Parade, Kotara South	FILE / JOB NO: P1678 SHEET: 1 OF 1				
POSIT	TION:							SURFACE ELEVATION:	IN	ICLIN	ATION: 90°		
DRILL	ING MET	HOD: TI	railer mounted drill rig	3				CONTRACTOR:	D	RILLE	ER: DS		
DATE	LOGGED): 07/02/	2019 DAT	E SAMPI	LED: 0	7/02/20)19	LOGGED BY: DS	С	HEC	KED BY:		
	Т	ESTING	& SAMPLING					MATERIAL					
Water	DC AS 1289.6 Depth (m)		Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components	Moisture Condition	Consistency/ Relative Densitv	STRUCTURE & Other Observations		
	0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7	6 7 8 3 2 1			-		ML	Sandy SILT, low plasticity, brown - grey	D	D	ALLUVIUM		
	$\begin{array}{c} 0.7 & -0.8 \\ 0.8 & -0.9 \\ 0.9 & -1.0 \\ \hline 1.0 & -1.1 \\ 1.1 & -1.2 \\ 1.2 & -1.3 \\ 1.3 & -1.4 \\ 1.4 & -1.5 \\ 1.5 & -1.6 \\ \end{array}$	0 0 1 5 5 6 9		U50 \ <u>0.80-1.00</u> /	 1.0		СН	Silty CLAY, high plasticity, grey, trace coal fragments	>PL	S - F	RESIDUAL SOIL — — — —		
	<u>1.6 - 1.7</u> <u>1.7 - 1.8</u>	12 12			- 2.0—			Terminated at 1.60 m					

							LL - Liquid L	.imit	P1678 BH6 1 OF
	Addition	al Comments	;	SOIL DESCR Based on U Classification WATEI	Inified System	SAMPLES & FIELD TESTS U - D - Disturbed Sample ES - B - Bulk Disturbed Sample MC - MC - PP - Pocket Penetrometer SPT - Standard Penetration Test VS -	MOISTUI D - Dry M - Moist VV - Wet -PL - Moist, a -PL - Moist, a -PL - Wet, ap -LL - Wet, at PL - Plastic	elow PL Ipprox. PL bove PL Ipprox. LL bove LL	CONSISTENCY/ RELATIVE DENSITY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense
			-						
			- - 9.0 —						
			- - 8.0 -						
			- - 7.0 -						
			- - 6.0 —						
			- - 5.0 —						
			- - 4.0 —						
			- - 3.0 —						

VA	LLEY		PROJECT :	Propos	c Diocese of Maitl ed School Upgrad	and - Newc	OG REPORT astle Parade, Kotara South		FIL		NO: BH7 ^{JB} NO: P1678 1 OF 1
POSI	TION:		200/11011.	Scoult			URFACE ELEVATION:		IN	ICLIN	ATION: 90°
		HOD: Tra	ailer mounted drill rig	g			ONTRACTOR:				R: LB
DATE	LOGGE	D: 07/02/2	019 DAT	E SAMPI	ED: 07/02/2019	L	OGGED BY: NWR		CI	HECK	ED BY:
	1	ESTING	& SAMPLING			1	MATERIAL				
Water	DC AS 1289.6 Depth (m)		Field Tests	Samples	Depth (m) Graphic Log Classification	Soil T	MATERIAL DESCRIPTION ype, Plasticity or Particle Characteristic, C Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
	0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7	$ \begin{array}{r} 4 \\ 4 \\ 7 \\ 10 \\ 7 \\ 0 \end{array} $	0.25m PP: >400 kPa	ES 0.00-0.10 ES 0.15-0.25		Silty	Silty SAND, fine grained, pale brown CLAY, low plasticity, pale grey / brown, wi je		M		FILL
	0.8 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 1.0 - 1.1 1.1 - 1.2 1.2 - 1.3 1.3 - 1.4	6 6 3 6 10 10 10 10 Verminated	150 - 200kPa	D 1.20-1.30/ U50 1.80-1.00	1.0 Cl	Silty	CLAY, medium plsaticity, pale grey / brow e mottling		 >PL	VSt	
					3.0 4.0 CI	2.20m Sand mottli	y Silty CLAY, medium plasticity, grey / son ng, fine grained sand (some friable bands	 me orange s)	~PL - >PL		
					5.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7		ove, with weathered inclusions		>PL		
					9.0	9.00m	instad at 0.00 m				
						Term	inated at 9.00 m				
							r	1			
		Additiona	I Comments			IPTION Inified System	SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental Sample B - Bulk Disturbed Sample MC - Moisture Content PP - Pocket Penetrometer SPT - Standard Penetration Test VS - Vane Shear	MOI D - Dr M - Mc W - W <pl -="" mc<br="">~PL - Mc ~PL - Mc ~LL - W >LL - W PL - Ph. LL - Lit</pl>	oist oist, bel oist, app oist, app oist, abo oet, apor oet, abor astic Lir	low PL prox. Pl ove PL rox. LL ve LL mit	H - Hard
							1	I 50			P1678 BH7 1 OF

P1512.GLBILogIVCL - BOREHOLE AND TESTPIT LOGIP1678 - BOREHOLE LOGS.GPJ119/02/2019 16:03

^{...} I File: P1678 BH7 1 OF 1

1		
1	/AL	LE
1	63	- 50

HOLE NO: **BOREHOLE LOG REPORT** BH8 FILE / JOB NO: P1678 Y/CIVILAB CLIENT: Catholic Diocese of Maitland - Newcastle SHEET: 1 OF 1 Proposed School Upgrades St James Primary School, 30 Vista Parade, Kotara South PROJECT : LOCATION : POSITION: SURFACE ELEVATION: INCLINATION: 90° DRILLING METHOD: Trailer mounted drill rig DRILLER: LB CONTRACTOR DATE SAMPLED: 07/02/2019 DATE LOGGED: 07/02/2019 LOGGED BY: NWR CHECKED BY: **TESTING & SAMPLING** MATERIAL DCP Classification Consistency/ Relative Density Moisture Condition Ê MATERIAL DESCRIPTION Soil Type, Plasticity or Particle Characteristic, Colour, Secondary and Minor Components Graphic Log AS 1289 6 3 2-1997 Symbol STRUCTURE & Other Observations Water Field Tests Samples Depth (Depth Blows (m) FILL: Silty SAND, fine grained, pale brown FILL: Clayey Sandy GRAVEL / Gravelly SAND, fine to coarse grained sand, pale brown, fine to medium gravel SM 0.10m М FILL 0.0 - 0. 0.15-0.25 D SP D .7 - 0.8 .8 - 0.9 .9 - 1.0 .0 - 1.1 ES 0.80-0.90 1.0 1.10m $\begin{array}{c} 1.0 & -1.1 \\ 1.1 & -1.2 \\ 1.2 & -1.3 \\ 1.3 & -1.4 \\ 1.4 & -1.5 \\ 1.5 & -1.6 \\ 1.6 & -1.7 \\ 1.7 & -1.8 \\ 1.8 & -1.9 \\ 1.9 & -2.0 \\ 2.0 & -2.1 \end{array}$ RESIDUAL SOIL Silty CLAY, high plasticity, dark grey / mottled orange, with fine grained sand 1.20-1.30 D СН >PL 1.30m PP: 150 kPa 1.50m S - F 1.30-1.50 As above, with fine to medium angular gravel > CH 1.80m Silty CLAY, high plasticity, dark grey / mottled orange, with fine grained sand 2.0 Terminated 3.0 4.0 СН >PL VSt 5.0 6.0 6.50m As above, with weathered inclusions 7.0

СН

8.50m

9.00m

CLASSIFICATION SYMBOLS &

SOIL DESCRIPTION

Based on Unified

Classification System

WATER

Water table

Water inflow

 \searrow

Terminated at 9.00 m

υ

D

в

FS

MC -

PP

vs -

Extremely Weathered SANDSTONE, fine grained, grey / orange, inferred extremely low strength

SAMPLES & FIELD TESTS

- Undisturbed Sample

Disturbed Sample

- Environmental Sample

- Bulk Disturbed Sample

Moisture Content

Pocket Penetrometer

SPT - Standard Penetration Test

Vane Shear

8.0

9.0

P1512. GLBILogIVCL - BOREHOLE AND TESTPIT LOGIP1678 - BOREHOLE LOGS. GPJI19/02/2019 16:03

Additional Comments

Dense

Very Dense

CONSISTENCY/

RELATIVE DENSITY

VS -

VS -S -F -St -VSt -H -VL -

L -MD -D -

VD -

Very Soft Soft Firm Stiff Very Stiff Hard Very Loose Loose Medium Dense Dense

>PL >LL

MOISTURE

Moist, below PL

Moist, approx. PL

Moist, above PL

Wet, approx. LL

Wet, above LL

Plastic Limit

Liguid Limit

Dry

Moist -

D

Μ

w _ Wet

<PL

~PL

>PL _

~11 -

>LL

PL -

LL -

-

BEDROCK

		B	
V	A		_

YCIVILAB	С
stechnical & Environmental Services	PRC

BOREHOLE LOG REPORT

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mounted	l drill rig	CONTRACTOR:	DRILLER: RB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: DS	CHECKED BY:

		ESTING	& SAMPLING		MATERIAL										
	D				_		E				_	×ر ا			
Water	AS 1289.6 Depth (m)		Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil T	MATERIAL DESCRIPTION ype, Plasticity or Particle Characteristic, (Secondary and Minor Components	Colour,	Moisture Condition	Consistenc Relative Densitv	STRUCTURE & Other Observations		
	0.0 - 0.1 0.1 - 0.2	8		ES	_		GP	FILL (coars	BASECOURSE): Silty Sandy GRAVEL, f e, brown / orange, fine to coarse grained	ine to sand	D	VD	FILL		
		10/50mm Refusial		\ <u>0.15-0.25</u> /	-			0.40m	CLAY, high plasticity, grey with orange ba						
				B 0.40-1.00	-										
					1.0 —										
				D	-		СН				<pl< td=""><td>VSt</td><td></td></pl<>	VSt			
				<u>∖1.30-1.50</u> 7	-										
					-2.0-			2.00m							
					-			lerm	nated at 2.00 m						
					_										
					-										
					3.0 -										
					_										
					-										
					4.0-										
					-										
					-										
					5.0										
					-										
					-										
					6.0 -										
					_										
					-										
					7.0-										
					-										
					_										
					-										
					8.0-		1								
					-		1								
					9.0 —										
					-										
					_		1								
		Addition	al Comments		CLASS	SIFICAT	ION S	YMBOLS &	SAMPLES & FIELD TESTS	мо	STURI	 E	CONSISTENCY/		
					5	Based	SCRII	PTION iified	U - Undisturbed Sample D - Disturbed Sample	D - Dr M - Mo	У		RELATIVE DENSITY VS - Very Soft		
					C	Classifica		-	ES - Environmental Sample B - Bulk Disturbed Sample	W - W <pl -="" m<="" td=""><td>et</td><td>low PL</td><td>S - Soft F - Firm</td></pl>	et	low PL	S - Soft F - Firm		
					I	w	ATER		MC - Moisture Content	~PL - Mo >PL - Mo	oist, ap	prox. F	VL VSt - Stiff VSt - Very Stiff H - Hard		
					-	\leq	Wate	r table	PP - Pocket Penetrometer SPT - Standard Penetration Test	~LL - W >LL - W	et, app	rox. LL			
						-	Wate	r inflow	VS - Vane Shear	PL - Pl			D - Dense VD - Very Dense		
										LL - Lie	quid Lir				

V	AL	_

BOREHOLE LOG REPORT

HOLE NO: BH13 FILE / JOB NO: P1678 SHEET: 1 OF 1

CLIENT: Catholic Diocese of Maitland - Newcastle PROJECT: Proposed School Upgrades LOCATION: St James Primary School, 30 Vista Parade, Kotara South

POSITION:		SURFACE ELEVATION:	INCLINATION: 90°
DRILLING METHOD: Trailer mount	ted drill rig	CONTRACTOR:	DRILLER: RB
DATE LOGGED: 07/02/2019	DATE SAMPLED: 07/02/2019	LOGGED BY: DS	CHECKED BY:

	1		MATERIAL										
Water	DC AS 1289.6 Depth (m)		Field Tests	Samples	Depth (m)	Graphic Log	Classification Symbol	Soil	MATERIAL DESCRIPTION Type, Plasticity or Particle Characteristic, (Secondary and Minor Components	Colour,	Moisture Condition	Consistency/ Relative Density	STRUCTURE & Other Observations
	0.0 - 0.1	10/80mm Refusal		ES \ <u>0.15-0.25</u> / ES \ <u>0.60-0.70</u> /	1.0		SP SP	0.40m FIL 0.70m FIL 1.20m	: Silty SAND, fine to medium grained, grey : Silty GRAVEL (Coal), fine to medium. bla : Silty Gravelly SAND (Crushed Sandstone lium grained, white, fine to medium gravel : as above, becoming grey / orange	ack	D	D	
				ES ∖1.50-1.60∫	-	-	сн	Silt	CLAY, high plasticity, grey, orange band		<pl< td=""><td></td><td>ALLOVIUM</td></pl<>		ALLOVIUM
									ninated at 2.00 m				
		Addition	al Comments	<u> </u>		SOIL DE Based Classifica	SCRII on Ur ation S ATER	nified System	U - Undisturbed Sample D - Disturbed Sample ES - Environmental Sample B - Bulk Disturbed Sample MC - Moisture Content	D - Dr M - Ma W - W <pl -="" ma<br="">~PL - Ma >PL - Ma</pl>	oist et oist, be oist, ap oist, ab	low PL prox. Pl ove PL	
								er table er inflow	PP - Pocket Penetrometer SPT - Standard Penetration Test VS - Vane Shear	~LL - W >LL - W PL - Pk LL - Lie	et, abo astic Li	ive LL mit nit	VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

Annex F

					Me	tals				TRH NEPM (2013)							BTEX			
														z						Γ
		Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	Napthalene	TRH C6-C10 Fraction	TRH C6-C10 less BTEX	TRH >C10-C16 Fraction	TRH >C10-C16 Fraction less	TRH >C16-C34 Fraction	TRH >C34-C40 Fraction	Benzene	Ethylbenzene	Toluene	
											-	-			₩ mg/kg			1		┢
Limit of Reporting		mg/kg 2	mg/kg 0.4	mg/kg 5	mg/kg 5	mg/kg 5	5	mg/kg 5	mg/kg 0.05	mg/kg 0.5	mg/kg 20	mg/kg 20	mg/kg 50	mg/kg 50	100	mg/kg 100	mg/kg 0.1	mg/kg 0.1	mg/kg 0.1	╈
EILs (NEPM 2013)		100	0.4	5	5	1100	5	5	0.05	170	20	20	50	50	100	100	0.1	0.1	0.1	┢
ESLs - Fine (NEPM 20	13)	100				1100				170		180		120	1300	5600	65	125	105	┢
ESLs - Coarse (NEPM												180		120	300	2800	50	70	85	t
HIL A (NEPM 2013)		100	20	100	6000	300	400	7400	40											t
	lay 0 - <1m (NEPM 2013)									5		50		280			0.7	NL	480	t
-	- Fine Soil (NEPM 2013)									-	800		1,000		3,500	10,000				t
	- Coarse Soil (NEPM 2013)										700		1,000		2,500	10,000				t
HSL A - Direct Conta										1,400	4,400		3,300		4,500	6,300	100	4,500	14,000	t
2	•		1							,	,		,							
Sample ID	Sampled Date																			
BH4_0.15-0.25	7/02/2019	11	<0.3	8.5	12	10	11	44	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	
BH4_1.2-1.3	7/02/2019	3	<0.3	3.3	2	9	1.3	6.2	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	
BH5_0.15-0.25	7/02/2019	9	<0.3	6.6	15	18	8.7	150	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	
BH5_0.8-1.0	7/02/2019	3	<0.3	2.7	4.8	8	1.4	12	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	
BH6_0.15-0.25	7/02/2019	5									.01	<25	-25	<25	<90	<120				Т
BH6_0.7-0.8		5	<0.3	3.8	8.7	11	1.8	28	< 0.05	<0.1	<25	N25	<25	N25	N90	<120	<0.1	< 0.1	< 0.1	
	7/02/2019	5	<0.3 <0.3	3.8 3.3	8.7 4	11 14	1.8 1.5	28 10	<0.05 <0.05	<0.1 <0.1	<25 <25	<25	<25	<25	<90	<120	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	┝
 BH7_0.15-0.25	7/02/2019 7/02/2019																			+
		5	<0.3	3.3	4	14	1.5	10	<0.05	<0.1	<25	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	+
BH7_0.15-0.25	7/02/2019	5 5	<0.3 <0.3	3.3 3.4	4 5.7	14 14	1.5 1.6	10 19	<0.05 <0.05	<0.1 <0.1	<25 <25	<25 <25	<25 <25	<25 <25	<90 <90	<120 <120	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8	7/02/2019 7/02/2019	5 5 5	<0.3 <0.3 <0.3	3.3 3.4 3.1	4 5.7 5.8	14 14 14	1.5 1.6 1.5	10 19 18	<0.05 <0.05 <0.05	<0.1 <0.1 <0.1	<25 <25 <25	<25 <25 <25	<25 <25 <25	<25 <25 <25	<90 <90 <90	<120 <120 <120	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	+
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25	7/02/2019 7/02/2019 7/02/2019	5 5 5 8	<0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5	4 5.7 5.8 9.7	14 14 14 14	1.5 1.6 1.5 5.5	10 19 18 40	<0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25	<25 <25 <25 <25	<25 <25 <25 <25	<25 <25 <25 <25	<90 <90 <90 <90	<120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 5 8 9	<0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1	4 5.7 5.8 9.7 7.4	14 14 14 14 18	1.5 1.6 1.5 5.5 2.8	10 19 18 40 61	<0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8	4 5.7 5.8 9.7 7.4 15	14 14 14 14 18 17	1.5 1.6 1.5 5.5 2.8 11	10 19 18 40 61 71	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6	4 5.7 5.8 9.7 7.4 15 2.9	14 14 14 14 18 17 9	1.5 1.6 1.5 5.5 2.8 11 1.7	10 19 18 40 61 71 6.6	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25	<90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7	4 5.7 5.8 9.7 7.4 15 2.9 17	14 14 14 14 18 17 9 13	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8	10 19 18 40 61 71 6.6 34	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 160	<25 <25 <25 <25 <25 <25 <25 <25 160	<90 <90 <90 <90 <90 <90 <90 590	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7	4 5.7 5.8 9.7 7.4 15 2.9 17	14 14 14 14 18 17 9 13	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8	10 19 18 40 61 71 6.6 34	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 160	<25 <25 <25 <25 <25 <25 <25 <25 160	<90 <90 <90 <90 <90 <90 <90 590	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25 BH13_0.6-0.7	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7	4 5.7 5.8 9.7 7.4 15 2.9 17	14 14 14 14 18 17 9 13	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8	10 19 18 40 61 71 6.6 34	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 160	<25 <25 <25 <25 <25 <25 <25 <25 160	<90 <90 <90 <90 <90 <90 <90 590	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25 BH13_0.6-0.7 Statistical Summary	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4 8	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7 4.3	4 5.7 5.8 9.7 7.4 15 2.9 17 5.7	14 14 14 18 17 9 13 10	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8 2.6	10 19 18 40 61 71 6.6 34 13	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 160 39	<25 <25 <25 <25 <25 <25 <25 <25 160 39	<90 <90 <90 <90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25 BH13_0.6-0.7 Statistical Summary Number of Results	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4 8 7	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7 4.3	4 5.7 5.8 9.7 7.4 15 2.9 17 5.7 7	14 14 14 18 17 9 13 10 7	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8 2.6 7	10 19 18 40 61 71 6.6 34 13 7	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 160 39	<25 <25 <25 <25 <25 <25 <25 160 39	<90 <90 <90 <90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25 BH13_0.15-0.25 BH13_0.6-0.7 Statistical Summary Number of Results Number of Detects	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4 8 7 7 7 7	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7 4.3 7 7 7	4 5.7 5.8 9.7 7.4 15 2.9 17 5.7 7 7 7	14 14 14 18 17 9 13 10 7 7	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8 2.6 7 7	10 19 18 40 61 71 6.6 34 13 7 7 7	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 7 0	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 160 39	<25 <25 <25 <25 <25 <25 <25 160 39	<90 <90 <90 <90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
BH7_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25 BH11_1.3-1.5 BH13_0.15-0.25 BH13_0.6-0.7 Statistical Summary Number of Results Number of Detects Minimum Detect	7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019 7/02/2019	5 5 8 9 4 8 4 8 7 7 7 4	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	3.3 3.4 3.1 7.5 5.1 8.8 5.6 2.7 4.3 7 7 7 15	4 5.7 5.8 9.7 7.4 15 2.9 17 5.7 7 7 5.4	14 14 14 18 17 9 13 10 7 7 8	1.5 1.6 1.5 5.5 2.8 11 1.7 3.8 2.6 7 7 7 2.6	10 19 18 40 61 71 6.6 34 13 7 7 7 24	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 7 0 0	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 <25 <25 <25	<25 <25 <25 <25 <25 <25 <25 160 39 0 0 0	<25 <25 <25 <25 <25 <25 <25 160 39 0 0 0	<90 <90 <90 <90 <90 <90 <90 <90 <90 <90	<120 <120 <120 <120 <120 <120 <120 <120	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	

<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3

0
0
0
0
-
0

				P	AH							0	СР					OPP	РСВ
JPEN .																			
Limit of Reporting		c කී පි.co කී ප.co	G Benzo(a)pyrene TEQ (lower bound)	c 强 영 做 Benzo(a)pyrene TEQ (medium bound)	c _ ලූ රූ කී කී Benzo(a)pyrene TEQ (upper bound)	mg/kg 0.5	mg/kg 0.5	0.05	mg/kg 0.05	D.05	uiu Mg/kg 0.05	Dieldrin Dieldrin 0.05	Eudosulfan I mg/kg 0.05	mg/kg 0.05	ці ша mg/kg 0.05	mg/kg	mg/kg	mg/kg 0.2	total PCB* mg/kg 0.1
EILs (NEPM 2013)		0.5	0.5	0.5	0.5	170	0.5	0.05	0.05	180	0.05	0.05	0.05	0.05	0.05	0.05	0.2	0.2	0.1
ESLs - Coarse/Fine (NE	PM 2013)	0.7				170				100									
HIL A (NEPM 2013)			3	3	3		300	240	240	240	6	6	270	270	10	6	300	160	1
HSL A - Direct Contact	t (CRC Care 2011)					1,400													
			L																
Sample ID	Sampled Date																		
BH4_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH4_1.2-1.3	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
BH5_0.15-0.25	7/02/2019	0.1	<0.2	<0.3	0.2	<0.1	1.4	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH5_0.8-1.0	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
BH6_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH6_0.7-0.8	7/02/2019	0.1	<0.2	<0.3	0.2	<0.1	2	-	-	-	-	-	-	-	-	-	-	-	-
BH7_0.15-0.25	7/02/2019	0.1	<0.2	<0.3	0.2	<0.1	1.9	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH7_0.7-0.8	7/02/2019	0.3	0.4	0.5	0.4	<0.1	3.9	-	-	-	-	-	-	-	-	-	-	-	-
BH8_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	1.3	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH8_0.8-0.9	7/02/2019	0.2	0.3	0.4	0.4	<0.1	3	-	-	-	-	-	-	-	-	-	-	-	-
BH11_0.15-0.25	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH11_1.3-1.5	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
BH13_0.15-0.25	7/02/2019	0.1	<0.2	<0.3	0.2	0.1	6	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.2	<1
BH13_0.6-0.7	7/02/2019	<0.1	<0.2	<0.3	<0.2	<0.1	<0.8	-	-	-	-	-	-	-	-	-	-	-	-
Statistical Summary																			
Statistical Summary		14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	1.4
Number of Results		14	14 2	14 2	14 6	14 1	14 7	14 0	14 0	14	14 0	14 0	14	14 0	14 0	14 0	14 0	14	14 0
Number of Detects Minimum Detect		6 0.1	0.3	0.4	0.2	0.1	1.3	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Detect		0.1	0.3	0.4	0.2	0.1	1.3 6	0	0	0	0	0	0	0	0	0	0	0	0
Average Concentratio	n	0.3	0.4	0.5	0.4	0.1	6 2.78571	-	-		-	- 0	- 0	-	-	-	-	-	-
Number of Guideline I		0.15	0.55	0.43	0.20007	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0
	LACECUAILES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	LOR	Unit	Primary Sample	QA Sample	RPD
Geotechnical & Environmental Services	LUK	Unit	BH11_1.3-1.5	DUP 1	- KPD
TRH					
TRH C6-C10 Fraction	20	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH C6-C10 less BTEX	20	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction	50	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C10-C16 Fraction less N	50	mg/kg	<u>12.5</u>	<u>12.5</u>	0.0
TRH >C16-C34 Fraction	100	mg/kg	45	45	0.0
TRH >C34-C40 Fraction	100	mg/kg	60	<u>60</u>	0.0
Naphthalene	0.5	mg/kg	0.05	0.05	0.0
BTEX					
Benzene	0.1	mg/kg	0.05	0.05	0.0
Ethylbenzene	0.1	mg/kg	0.05	0.05	0.0
m&p-Xylenes	0.2	mg/kg	0.1	0.1	0.0
o-Xylene	0.1	mg/kg	0.05	0.05	0.0
Toluene	0.1	mg/kg	0.05	0.05	0.0
Xylenes - Total	0.3	mg/kg	0.15	0.15	0.0
Metals		0, 0			
Arsenic	2	mg/kg	8	8	0.0
Cadmium	0.4	mg/kg	0.15	0.15	0.0
Chromium	5	mg/kg	5.6	5.6	0.0
Copper	5	mg/kg	2.9	3.5	-18.8
Lead	5	mg/kg	9	11	-20.0
Mercury	0.1	mg/kg	0.025	0.025	0.0
Nickel	5	mg/kg	1.7	1.4	19.4
Zinc	5	mg/kg	6.6	9.1	-31.8
РАН	5		0.0	5.1	51.0
Acenaphthene	1	mg/kg	0.05	0.05	0.0
Acenaphthylene	1	mg/kg	0.05	0.05	0.0
Anthracene	0.5	mg/kg	0.05	0.05	0.0
Benz(a)anthracene	0.5	mg/kg	0.05	0.05	0.0
Benzo(a)pyrene	5	mg/kg	0.05	0.05	0.0
Benzo(a)pyrene TEQ (lower bound)	0.5	mg/kg	0.1	0.1	0.0
Benzo(a)pyrene TEQ (medium bound)	0.5	mg/kg	0.15	0.15	0.0
Benzo(a)pyrene TEQ (upper bound)	0.2	mg/kg	0.1	0.1	0.0
Benzo(b&j)fluoranthene	1	mg/kg	0.05	0.05	0.0
Benzo(g.h.i)perylene	0.4	mg/kg	0.05	0.05	0.0
Benzo(k)fluoranthene	5	mg/kg	0.05	0.05	0.0
Chrysene	1	mg/kg	0.05	0.05	0.0
Fluoranthene	0.5	mg/kg	0.05	0.05	0.0
Fluorene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Naphthalene	0.5	mg/kg	<u>0.05</u>	0.05	0.0
Phenanthrene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Pyrene	0.5	mg/kg	<u>0.05</u>	<u>0.05</u>	0.0
Total PAH	0.5	mg/kg	<u>0.4</u>	<u>0.4</u>	0.0

Notes

RPD = Relative Percentage Difference.

RPD assessment criteria were adopted in general accordance with NEPM Schedule B3 Section 3.5 (NEPC 2013). RPDs where both primary and duplicate results were < 2.5 times the LOR were not considered. RPDs where primary and/or duplicate results were >2.5 times the LOR were assessed based on a threshold of +/- 30%. Exceedence of this trheshold triggered consideration of associated data quality.

Geotechnical & Environmental Services	LOR Soil	Trip Spike Soil	Trip Blank Soil
Date			
Unit of Measure	mg/kg	% Recovery	mg/kg
BTEX			
Benzene	0.1	86%	0.05
Toluene	0.1	86%	0.05
Ethylbenzene	0.1	89%	0.05
m&p-Xylenes	0.2	89%	0.1
o-Xylene	0.1	89%	0.05
Xylenes - Total	0.3	-	0.15

Annex G

ANALYTICAL REPORT

Contact	Jake Duck	Manager	Huong Crawford
Client	VALLEY CIVILAB PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 3127 THORNTON NSW 2322	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4966 1844	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jake.duck@vclab.com.au	Email	au.environmental.sydney@sgs.com
Project	P1678-KOTARA	SGS Reference	SE189065 R0
Order Number	03787	Date Received	11 Feb 2019
Samples	18	Date Reported	18 Feb 2019

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES _

for

Bennet Lo Senior Organic Chemist/Metals Chemis

Kintyl

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

Teresa Nguyen Organic Chemist

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit PO

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

	S	nple Number ample Matrix Sample Date ample Name	SE189065.001 Soil 07 Feb 2019 BH4_0.15-0.25	SE189065.002 Soil 07 Feb 2019 BH4_1.2-1.3	SE189065.003 Soil 07 Feb 2019 BH5_0.15-0.25	SE189065.004 Soil 07 Feb 2019 BH5_0.8-1.0
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	86 87	81 90	83 95	80
d8-toluene (Surrogate)	%	-	93	85	89	86
Bromofluorobenzene (Surrogate)	%	-	80	75	71	71
Totals						
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 14/2/20	19			1	
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	86	81	83	80
d4-1,2-dichloroethane (Surrogate)	%	-	87	90	95	88
d8-toluene (Surrogate)	%	-	93	85	89	86
Bromofluorobenzene (Surrogate)	%	-	80	75	71	71
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

	Sa	uple Number Imple Matrix Sample Date ample Name	c Soil 9 07 Feb 2019	SE189065.002 Soil 07 Feb 2019 BH4_1.2-1.3	SE189065.003 Soil 07 Feb 2019 BH5_0.15-0.25	SE189065.004 Soil 07 Feb 2019 BH5_0.8-1.0
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403						
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands		II				
		05		05	25	
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	N420 Testec	1: 14/2/201	9			
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	0.2
Pyrene	mg/kg	0.1	<0.1	<0.1	0.3	0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.2	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.4	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.4	<0.8
Surrogates	1	I				
d5-nitrobenzene (Surrogate)	%	-	96	94	90	92
2-fluorobiphenyl (Surrogate)	%	-	102	100	100	102
d14-p-terphenyl (Surrogate)	%	-	102	102	100	100
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019						
11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					I	
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	-
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
			<0.1	-	<0.1	-
Lindane	mg/kg	0.1				
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor Aldrin	mg/kg mg/kg	0.1	<0.1 <0.1	-	<0.1	-
Heptachlor Aldrin Beta BHC	mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	-	<0.1 <0.1	-
Heptachlor Aldrin Beta BHC Delta BHC	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	-	<0.1 <0.1 <0.1	
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - -	<0.1 <0.1 <0.1 <0.1	- - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p ⁻ DDE	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2	- - - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	- - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1	- - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1	- - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1	- - - - - - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p.p'-DDE	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - -
Heptachlor Aldrin Beta BHC Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - -

SE189065 R0

	s	nple Number ample Matrix Sample Date sample Name	Soil 07 Feb 2019	SE189065.002 Soil 07 Feb 2019 BH4_1.2-1.3	SE189065.003 Soil 07 Feb 2019 BH5_0.15-0.25	SE189065.004 Soil 07 Feb 2019 BH5_0.8-1.0
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019 (continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	95	-	105	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Dichlorvos	mg/kg	0.5	<0.5	-	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	-	<0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	-	<0.2	-

Malathion	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	-
Methidathion	mg/kg	0.5	<0.5	-	<0.5	-
Ethion	mg/kg	0.2	<0.2	-	<0.2	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	<0.2	-
Total OP Pesticides*	mg/kg	1.7	<1.7	-	<1.7	-

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	102	-	100	-
d14-p-terphenyl (Surrogate)	%	-	102	-	100	-

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-
Surrogates						

 Tetrachloro-m-xylene (TCMX) (Surrogate)
 %
 95
 105

	S	mple Number ample Matrix Sample Date Sample Name	SE189065.001 Soil 07 Feb 2019 BH4_0.15-0.25	SE189065.002 Soil 07 Feb 2019 BH4_1.2-1.3	SE189065.003 Soil 07 Feb 2019 BH5_0.15-0.25	SE189065.00 Soil 07 Feb 2019 BH5_0.8-1.0
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/Ma	aterials by ICPOES Met	thod: AN040/	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	11	3	9	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	8.5	3.3	6.6	2.7
Copper, Cu	mg/kg	0.5	12	2.0	15	4.8
Nickel, Ni	mg/kg	0.5	11	1.3	8.7	1.4
	mg/kg	1	10	9	18	8
Lead, Pb	0.0				150	12
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20	mg/kg	0.05	<0.05	6.2	<0.05	<0.05
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2	2019 mg/kg	0.05	<0.05	<0.05	<0.05	
Mercury	19 mg/kg					<0.05
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth	2019 mg/kg	0.05	<0.05	<0.05	<0.05	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As	mg/kg 19 2019 %w/w od: AN318 Tested: 14/2	0.05	<0.05	<0.05	<0.05	11
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd	mg/kg 19 2019 2019 2014 3 2014 2015 2019 2014 2014 2014 2014 2014 2014 2014 2014	0.05 0.5 2/2019	<0.05 7.1	<0.05	<0.05 6.2	11
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg 19 2019 %w/w od: AN318 Tested: 14/2 µg/L	0.05 0.5 2/2019 1 0.1	<0.05 7.1	<0.05	<0.05 6.2	11
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg 19 2019 %w/w od: AN318 Tested: 14/2 µg/L µg/L	0.05 0.5 2/2019 1 0.1 1	<0.05 7.1 - - -	<0.05	<0.05 6.2	- - -
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2 % Moisture	mg/kg 19 2019 %w/w od: AN318 Tested: 14/2 µg/L µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1 1 1	<0.05 7.1 	<0.05	<0.05 6.2	- - - -

Mercury (dissolved) in Water	Method: AN311(Perth)/AN312	Tested: 15/2/2019
------------------------------	----------------------------	-------------------

Mercury mg/L 0.0001	Г							
		Mercury	mg/L	0.0001	-	-	-	-

	S	mple Number ample Matrix Sample Date Sample Name	SE189065.005 Soil 07 Feb 2019 BH6_0.15-0.25	SE189065.006 Soil 07 Feb 2019 BH6_0.7-0.8	SE189065.007 Soil 07 Feb 2019 BH7_0.15-0.25	SE189065.008 Soil 07 Feb 2019 BH7_0.7-0.8
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	81	79	83	84
d4-1,2-dichloroethane (Surrogate)	%	-	83	83	93	96
d8-toluene (Surrogate)	%	-	84	83	86	89
Bromofluorobenzene (Surrogate)	%	-	71	77	73	78
Totals						
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes	sted: 14/2/20	19				
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	81	79	83	84
d4-1,2-dichloroethane (Surrogate)	%	-	83	83	93	96
d8-toluene (Surrogate)	%	-	84	83	86	89
Bromofluorobenzene (Surrogate)	%	-	71	77	73	78
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

		nple Number ample Matrix	SE189065.005 Soil	SE189065.006 Soil	SE189065.007 Soil	SE189065.008 Soil
		Sample Date ample Name	07 Feb 2019 BH6_0.15-0.25	07 Feb 2019 BH6_0.7-0.8	07 Feb 2019 BH7_0.15-0.25	07 Feb 2019 BH7_0.7-0.8
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403						
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	1420 Tested	l: 14/2/2019				
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.1	0.2	0.5
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	0.6	0.6	1.0
Pyrene Parate Pyrene Pyre	mg/kg	0.1	0.2	0.5	0.4	0.8
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	0.2	0.3
Chrysene	mg/kg	0.1	<0.1	0.2	0.2	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.2	0.2	0.4
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.1	0.1	0.2
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	0.3
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.4</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.5</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	0.5
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.2</td><td>0.2</td><td>0.4</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.2	0.2	0.4
Total PAH (18)	mg/kg	0.8	<0.8	2.0	1.9	3.9
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	2.0	1.9	3.9
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	94	96	96	96
2-fluorobiphenyl (Surrogate)	%	-	102	102	102	102
d14-p-terphenyl (Surrogate)	%	-	102	102	102	100
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019					I	
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	-
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	-
Aldrin	mg/kg	0.1	<0.1	-	<0.1	-
Beta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Delta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	-
Alpha Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
Gamma Chlordane	mg/kg	0.1	<0.1	-	<0.1	-
Alpha Chlordane	mg/kg	0.1	<0.1	-	<0.1	-
trans-Nonachlor	mg/kg	0.1	<0.1	-	<0.1	-
1005	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDE					1	
p,p-UDE Dieldrin Endrin	mg/kg	0.2	<0.2 <0.2	-	<0.2	-

SE189065 R0

-

-

-

-

	S	mple Number ample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189065.006 Soil 07 Feb 2019 BH6_0.7-0.8	SE189065.007 Soil 07 Feb 2019 BH7_0.15-0.25	SE189065.008 Soil 07 Feb 2019 BH7_0.7-0.8
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019 (d	continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106	-	103	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Dichlorvos	mg/kg	0.5	<0.5	-	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	-	<0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	-	<0.2	-
Malathion	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	-

ід/кд Methidathion 0.5 <0.5 <0.5 mg/kg Ethion mg/kg 0.2 <0.2 <0.2 Azinphos-methyl (Guthion) mg/kg 0.2 <0.2 -<0.2 Total OP Pesticides* 1.7 <1.7 <1.7 mg/kg -

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	102	-	102	-
d14-p-terphenyl (Surrogate)	%	-	102	-	102	-

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-
			·			
Surrogates						

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	106	-	103	-
--	---	---	---	-----	---	-----	---

	s	nple Number ample Matrix Sample Date cample Name	SE189065.005 Soil 07 Feb 2019 BH6_0.15-0.25	SE189065.006 Soil 07 Feb 2019 BH6_0.7-0.8	SE189065.007 Soil 07 Feb 2019 BH7_0.15-0.25	SE189065.00 Soil 07 Feb 2019 BH7_0.7-0.8
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/M	Aterials by ICPOES Met	hod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	5	5	5	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	3.8	3.3	3.4	3.1
Copper, Cu	mg/kg	0.5	8.7	4.0	5.7	5.8
Nickel, Ni	mg/kg	0.5	1.8	1.5	1.6	1.5
Lead, Pb	mg/kg	1	11	14	14	14
		-	28	10	19	18
Mercury in Soil Method: AN312 Tested: 14/2/2	019 mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2	019 mg/kg	· · ·				<0.05
Mercury in Soil Method: AN312 Tested: 14/2/2 ^{Mercury} Moisture Content Method: AN002 Tested: 14/2	019 mg/kg	· · ·				<0.05
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Met	019 2/2019 %w/w thod: AN318 Tested: 14/2	0.05	<0.05	<0.05	<0.05	
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Met Arsenic, As	019 mg/kg 2/2019 %w/w	0.05	<0.05	<0.05	<0.05	10
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Met Arsenic, As Cadmium, Cd	019 2/2019 %w/w thod: AN318 Tested: 14/2 µg/L	0.05	<0.05	<0.05	<0.05	10
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Met Arsenic, As Cadmium, Cd Chromium, Cr	019 2/2019 ************************************	0.05 0.5 2/2019 1 0.1	<0.05	<0.05	<0.05	- -
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture Trace Metals (Dissolved) in Water by ICPMS Met Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	019 2/2019 2/2019 2/2019 2/2019 %w/w thod: AN318 Tested: 14/2 µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1	<0.05	<0.05	<0.05	- - - -
Mercury in Soil Method: AN312 Tested: 14/2/2 Mercury Moisture Content Method: AN002 Tested: 14/2 % Moisture	019 2/2019 2/2019 2/2019 2/2019 %w/w thod: AN318 Tested: 14/2 µg/L µg/L µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1 1	<0.05	<0.05	<0.05	- - - - - -

Mercury mg/L 0.0001	Г							
		Mercury	mg/L	0.0001	-	-	-	-

	Ş	mple Number Sample Matrix Sample Date Sample Name	SE189065.009 Soil 07 Feb 2019 BH8_0.15-0.25	SE189065.010 Soil 07 Feb 2019 BH8_0.8-0.9	SE189065.011 Soil 07 Feb 2019 BH11_0.15-0.25	SE189065.012 Soil 07 Feb 2019 BH11_1.3-1.5
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	82 93	83 93	81 89	91 92
d8-toluene (Surrogate)	%	-	85	87	84	90
Bromofluorobenzene (Surrogate)	%	-	74	77	70	72
Totals						
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes	sted: 14/2/20)19				
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	82	83	81	91
d4-1,2-dichloroethane (Surrogate)	%	-	93	93	89	92
d8-toluene (Surrogate)	%	-	85	87	84	90
Bromofluorobenzene (Surrogate)	%	-	74	77	70	72
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

	Sa	nple Number ample Matrix Sample Date ample Name	SE189065.009 Soil 07 Feb 2019 BH8_0.15-0.25	SE189065.010 Soil 07 Feb 2019 BH8_0.8-0.9	SE189065.011 Soil 07 Feb 2019 BH11_0.15-0.25	SE189065.012 Soil 07 Feb 2019 BH11_1.3-1.5
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403						
TRH C10-C14		20	<20	r20	<20	<20
	mg/kg	20		<20		
TRH C15-C28 TRH C29-C36	mg/kg	45	<45 <45	<45 <45	<45 <45	<45 <45
TRH C23-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN	1420 Tested	d: 14/2/2019				
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	0.3	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.4	0.8	0.2	<0.1
Pyrene	mg/kg	0.1	0.3	0.6	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.1	0.3	<0.1	<0.1
Chrysene	mg/kg	0.1	0.1	0.2	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.3	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.3</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.3	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.4</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.4	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.4</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.4	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	1.3	3.0	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.3	3.0	<0.8	<0.8
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	94	96	92	96
2-fluorobiphenyl (Surrogate)	%	-	102	102	100	102
d14-p-terphenyl (Surrogate) OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	%	-	100	102	102	104
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	<0.1	-
Alpha BHC	mg/kg	0.1	<0.1	-	<0.1	-
Lindane	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor	mg/kg	0.1	<0.1	-	<0.1	-
Aldrin	mg/kg	0.1	<0.1	-	<0.1	-
Beta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Delta BHC	mg/kg	0.1	<0.1	-	<0.1	-
Heptachlor epoxide	mg/kg	0.1	<0.1		<0.1	-
o,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	
Alpha Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
Gamma Chlordane Alpha Chlordane	mg/kg	0.1	<0.1	-	<0.1	-
Aipna Chiordane trans-Nonachlor	mg/kg mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDE	mg/kg	0.1	<0.1	-	<0.1	-
p,p-DDE Dieldrin	mg/kg	0.1	<0.1	-	<0.1	-
	iiig/ng			-		
Endrin	mg/kg	0.2	<0.2		<0.2	-

SE189065 R0

	S	nple Number ample Matrix Sample Date ample Name	SE189065.009 Soil 07 Feb 2019 BH8_0.15-0.25	SE189065.010 Soil 07 Feb 2019 BH8_0.8-0.9	SE189065.011 Soil 07 Feb 2019 BH11_0.15-0.25	SE189065.012 Soil 07 Feb 2019 BH11_1.3-1.5
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	(continued)					
o,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
o,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	<0.2	-
p,p'-DDD	mg/kg	0.1	<0.1	-	<0.1	-
p,p'-DDT	mg/kg	0.1	<0.1	-	<0.1	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	<0.1	-
Methoxychlor	mg/kg	0.1	<0.1	-	<0.1	-
Endrin Ketone	mg/kg	0.1	<0.1	-	<0.1	-
Isodrin	mg/kg	0.1	<0.1	-	<0.1	-
Mirex	mg/kg	0.1	<0.1	-	<0.1	-
Total CLP OC Pesticides	mg/kg	1	<1	-	<1	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	105	-	92	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019						
Dichlorvos	mg/kg	0.5	<0.5	-	<0.5	-
Dimethoate	mg/kg	0.5	<0.5	-	<0.5	-
		0.5				

Diffetioate	iiig/kg	0.5	-0.5	-	-0.5	-
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	<0.5	-
Fenitrothion	mg/kg	0.2	<0.2	-	<0.2	-
Malathion	mg/kg	0.2	<0.2	-	<0.2	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	-	<0.2	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	<0.2	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	<0.2	-
Methidathion	mg/kg	0.5	<0.5	-	<0.5	-
Ethion	mg/kg	0.2	<0.2	-	<0.2	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	<0.2	-
Total OP Pesticides*	mg/kg	1.7	<1.7	-	<1.7	-

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	102	-	100	-
d14-p-terphenyl (Surrogate)	%	-	100	-	102	-

PCBs in Soil Method: AN420 Tested: 14/2/2019

Arochlor 1016	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1221	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1232	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1242	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1248	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1254	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1260	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1262	mg/kg	0.2	<0.2	-	<0.2	-
Arochlor 1268	mg/kg	0.2	<0.2	-	<0.2	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	<1	-

Tetrachloro-m-xylene (TCMX) (Surrogate) % - 105 92 -
--

	S	mple Number ample Matrix Sample Date Sample Name	SE189065.009 Soil 07 Feb 2019 BH8_0.15-0.25	SE189065.010 Soil 07 Feb 2019 BH8_0.8-0.9	SE189065.011 Soil 07 Feb 2019 BH11_0.15-0.25	SE189065.012 Soil 07 Feb 2019 BH11_1.3-1.5
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids/Ma	aterials by ICPOES Met	hod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	8	9	4	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	7.5	5.1	8.8	5.6
Copper, Cu	mg/kg	0.5	9.7	7.4	15	2.9
Nickel, Ni	mg/kg	0.5	5.5	2.8	11	1.7
Lead, Pb	mg/kg	1	14	18	17	9
Lead, FD				61	71	6.6
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20	19 mg/kg	0.05	40	<0.05	<0.05	<0.05
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/2	19 mg/kg 2019	0.05	<0.05	<0.05	<0.05	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury	19 mg/kg					<0.05 15
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth	19 mg/kg 2019	0.05	<0.05	<0.05	<0.05	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As	19 mg/kg 2019 %w/w nod: AN318 Tested: 14/2	0.05	<0.05	<0.05 5.7	<0.05	15
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd	19 mg/kg 2019 %w/w Nod: AN318 Tested: 14/2 µg/L	0.05 0.5 2/2019	<0.05 7.5	<0.05 5.7	<0.05 4.4	15
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr	19 mg/kg 2019 %w/w nod: AN318 Tested: 14/2 µg/L µg/L	0.05 0.5 2/2019 1 0.1	<0.05 7.5	<0.05 5.7	<0.05 4.4	15
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture Trace Metals (Dissolved) in Water by ICPMS Meth Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	19 mg/kg 2019 %w/w hod: AN318 Tested: 14/2 µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1	<0.05 7.5 - - -	<0.05 5.7 - - -	<0.05 4.4	
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2/20 Mercury Moisture Content Method: AN002 Tested: 14/2/ % Moisture	19 mg/kg 2019 %w/w nod: AN318 Tested: 14/2 µg/L µg/L µg/L µg/L	0.05 0.5 2/2019 1 0.1 1 1	<0.05 7.5 - - - -	<0.05 5.7 - - - -	<0.05 4.4	- - - - -

Mercury	mg/L	0.0001	-	-	-	-

	S	mple Number Sample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189065.014 Soil 07 Feb 2019 BH13_0.6-0.7	SE189065.015 Soil 07 Feb 2019 DUP 1	SE189065.016 Water 07 Feb 2019 RIN
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 14/2/2019						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	-
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Surrogates Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	%	-	78 87	95 100	82 91	-
d8-toluene (Surrogate)	%	-	87	102	88	-
Bromofluorobenzene (Surrogate)	%	-	80	89	78	-
Totals					I	
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	-
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 14/2/20	19				
TRH C6-C10	mg/kg	25	<25	<25	<25	-
TRH C6-C9	mg/kg	20	<20	<20	<20	-
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	78	95	82	-
d4-1,2-dichloroethane (Surrogate)	%	-	87	100	91	-
d8-toluene (Surrogate)	%	-	87	102	88	-
Bromofluorobenzene (Surrogate)	%	-	80	89	78	-
VPH F Bands	1					
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	-
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	-

		ple Number		SE189065.014	SE189065.015	SE189065.016
		ample Matrix Sample Date		Soil 07 Feb 2019	Soil 07 Feb 2019	Water 07 Feb 2019
		ample Name		BH13_0.6-0.7	DUP 1	RIN
Deservator	Units					
Parameter						
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN4	03 Tested: 14	+/2/2019				
TRH C10-C14	mg/kg	20	110	30	<20	-
TRH C15-C28	mg/kg	45	510	89	<45	-
TRH C29-C36	mg/kg	45	170	<45	<45	-
TRH C37-C40	mg/kg	100	<100	<100	<100	-
TRH C10-C36 Total	mg/kg	110	790	120	<110	-
TRH C10-C40 Total (F bands)	mg/kg	210	740	<210	<210	-
TRH F Bands						
TRH >C10-C16	mg/kg	25	160	39	<25	-
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	160	39	<25	-
TRH >C16-C34 (F3)	mg/kg	90	590	<90	<90	-
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	-
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: A		1: 14/2/2019				
Naphthalene	mg/kg	0.1	0.1	<0.1	<0.1	-
2-methylnaphthalene	mg/kg	0.1	1.0	<0.1	<0.1	-
1-methylnaphthalene	mg/kg	0.1	1.9	0.2	<0.1	-
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Phenanthrene	mg/kg	0.1	1.5	0.2	<0.1	-
Anthracene	mg/kg	0.1	0.1	<0.1	<0.1	-
Fluoranthene	mg/kg	0.1	0.3	<0.1	<0.1	-
Pyrene	mg/kg	0.1	0.4	<0.1	<0.1	-
Benzo(a)anthracene	mg/kg	0.1	0.3	<0.1	<0.1	-
Chrysene	mg/kg	0.1	0.2	<0.1	<0.1	-
Benzo(b&j)fluoranthene	mg/kg	0.1	0.1	<0.1	<0.1	-
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	<0.1	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	-
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.3</td><td><0.2</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	0.2	<0.3	<0.2	
Total PAH (18)		0.2	6.0	<0.2	<0.2	-
Total PAH (16)	mg/kg					-
	mg/kg	0.8	3.1	<0.8	<0.8	-
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	82	98	92	-
2-fluorobiphenyl (Surrogate)	%	-	106	100	98	-
d14-p-terphenyl (Surrogate)	%	_	90	98	100	
OC Pesticides in Soil Method: AN420 Tested: 14/2/2019	78	-	30	30	100	-
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-	-
Alpha BHC	mg/kg	0.1	<0.1		-	-
Lindane	mg/kg	0.1	<0.1	-	-	-
Heptachlor	mg/kg	0.1	<0.1	-	-	-
Aldrin	mg/kg	0.1	<0.1	-	-	-
		0.1	<0.1	-	-	-
Beta BHC	mg/kg	0.1				-
Beta BHC Delta BHC	mg/kg	0.1	<0.1	-	-	
			<0.1	-	-	-
Delta BHC	mg/kg	0.1				-
Delta BHC Heptachlor epoxide	mg/kg mg/kg mg/kg	0.1	<0.1	-	-	
Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	<0.1 <0.1 <0.2	-	- -	-
Delta BHC Heptachlor epoxide o.p'-DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	<0.1 <0.1 <0.2 <0.1	- - -	-	-
Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1	- - - -	- - - - -	-
Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1	- - - - - -	- - - - - -	- - - - -
Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p,p'-DDE	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - -	- - - - - - - - -	- - - - - -
Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1	- - - - - -	- - - - - -	- - - - -

SE189065 R0

		Sample Number Sample Matrix Sample Date Sample Name	Soil 07 Feb 2019	SE189065.014 Soil 07 Feb 2019 BH13_0.6-0.7	SE189065.015 Soil 07 Feb 2019 DUP 1	SE189065.016 Water 07 Feb 2019 RIN
Parameter OC Pesticides in Soil Method: AN420 Tested: 18/2/2019	Units (continued)	LOR				
o,p'-DDD	mg/kg	0.1	<0.1	_	-	-
o,p'-DDT	mg/kg	0.1	<0.1	-	-	-
Beta Endosulfan	mg/kg	0.2	<0.2	_	-	-
p,p'-DDD	mg/kg	0.1	<0.1	-	-	-
p,p'-DDT	mg/kg	0.1	<0.1	-	-	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	-	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	-	-
Methoxychlor	mg/kg	0.1	<0.1	-	-	-
Endrin Ketone	mg/kg	0.1	<0.1	_	-	-
Isodrin	mg/kg	0.1	<0.1		-	-
Mirex	mg/kg	0.1	<0.1	_	-	
Total CLP OC Pesticides	mg/kg	1	<1	_	-	-
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103	-	-	-
OP Pesticides in Soil Method: AN420 Tested: 14/2/2019 Dichlorvos	mg/kg	0.5	<0.5		_	
Dimethoate	mg/kg	0.5	<0.5		-	
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	-	-	-
Fenitrothion	mg/kg	0.2	<0.2	_	-	-
Malathion	mg/kg	0.2	<0.2	_	-	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	_	-	-
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-	-
Bromophos Ethyl	mg/kg	0.2	<0.2	-	-	-
Methidathion	mg/kg	0.5	<0.5	-	-	-
Ethion	mg/kg	0.2	<0.2	-	-	-
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-	-
Total OP Pesticides*	mg/kg	1.7	<1.7	-	-	-
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	106	-	-	-
d14-p-terphenyl (Surrogate)	%	-	90	-	-	-
PCBs in Soil Method: AN420 Tested: 14/2/2019					1	
Arochlor 1016	mg/kg	0.2	<0.2	-	-	-
Arochlor 1221	mg/kg	0.2	<0.2	-	-	-
Arochlor 1232	mg/kg	0.2	<0.2	-	-	-
Arochlor 1242	mg/kg	0.2	<0.2	-	-	-
Arochlor 1248	mg/kg	0.2	<0.2	-	-	-
Arochlor 1254	mg/kg	0.2	<0.2	-	-	-
Arochlor 1260	mg/kg	0.2	<0.2	-	-	-
Arochlor 1262	mg/kg	0.2	<0.2	-	-	-
Arochlor 1268	mg/kg	0.2	<0.2	-	-	-
Total PCBs (Arochlors)	mg/kg	1	<1	-	-	-

Surrogates

	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	103	-	-	-
--	---	---	---	-----	---	---	---

	S	mple Number ample Matrix Sample Date Sample Name	SE189065.013 Soil 07 Feb 2019 BH13_0.15-0.25	SE189065.014 Soil 07 Feb 2019 BH13_0.6-0.7	SE189065.015 Soil 07 Feb 2019 DUP 1	SE189065.01 Water 07 Feb 2019 RIN
Parameter	Units	LOR				
Total Recoverable Elements in Soil/Waste Solids	Materials by ICPOES Met	hod: AN040	AN320 Tested:	14/2/2019		
Arsenic, As	mg/kg	1	4	8	8	-
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	-
Chromium, Cr	mg/kg	0.3	2.7	4.3	5.6	-
Copper, Cu	mg/kg	0.5	17	5.7	3.5	-
Nickel, Ni	mg/kg	0.5	3.8	2.6	1.4	-
Lead, Pb	mg/kg	1	13	10	11	-
			34	13	9.1	-
Mercury in Soil Method: AN312 Tested: 14/2	/2019 mg/kg	0.05	<0.05	<0.05	<0.05	-
Zinc, Zn Mercury in Soil Method: AN312 Tested: 14/2 ^{Mercury} Moisture Content Method: AN002 Tested: 14	/2019 mg/kg					
Mercury in Soil Method: AN312 Tested: 14/2	/2019 mg/kg					
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14 % Moisture Trace Metals (Dissolved) in Water by ICPMS M	/2019 mg/kg	0.05	<0.05	<0.05	<0.05	
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14 % Moisture Trace Metals (Dissolved) in Water by ICPMS M Arsenic, As	/2019 mg/kg k/2/2019 %w/w lethod: AN318 Tested: 14/2	0.05	<0.05	<0.05 5.0	<0.05	-
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14 % Moisture Trace Metals (Dissolved) in Water by ICPMS M Arsenic, As Cadmium, Cd	/2019 mg/kg W/2/2019 %w/w ethod: AN318 Tested: 14/2 µg/L	0.05 0.5 2/2019 1	<0.05 9.0	<0.05 5.0	<0.05	- - <1
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14 % Moisture Trace Metals (Dissolved) in Water by ICPMS M Arsenic, As Cadmium, Cd Chromium, Cr	/2019 mg/kg k/2/2019 %w/w ethod: AN318 Tested: 14/2 µg/L µg/L	0.05 0.5 2/2019 1 0.1	<0.05 9.0	<0.05 5.0	<0.05	- - <1 <0.1
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14 % Moisture Trace Metals (Dissolved) in Water by ICPMS M Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	/2019 //2/2019 //2/2019 //// //// //// //// //// //// //// //// //// ///// ///// //////	0.05 0.5 2/2019 1 0.1 1	<0.05 9.0	<0.05 5.0 - - - -	<0.05	- - <1 <0.1 <1
Mercury in Soil Method: AN312 Tested: 14/2 Mercury Moisture Content Method: AN002 Tested: 14	/2019 //2/2019 //2/2019 ///// //// //// //// //// //// //// //// //// //// //// ///// ///// //////	0.05 0.5 2/2019 1 0.1 1 1 1	<0.05 9.0 - - - -	<0.05 5.0 - - - - - -	<0.05	- - <0.1 <1 <1

Mercury	mg/L	0.0001	-	-	-	<0.0001

SE189065 R0

	S	nple Number ample Matrix Sample Date Sample Name	SE189065.017 Soil 07 Feb 2019 TRIP SPIKE	SE189065.018 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR		
VOC's in Soil Method: AN433 Tested: 14/2/2019				
Monocyclic Aromatic Hydrocarbons				
Benzene	mg/kg	0.1	[86%]	<0.1
Toluene	mg/kg	0.1	[86%]	<0.1
Ethylbenzene	mg/kg	0.1	[89%]	<0.1
m/p-xylene	mg/kg	0.2	[89%]	<0.2
o-xylene	mg/kg	0.1	[89%]	<0.1
Polycyclic VOCs				
Naphthalene	mg/kg	0.1	-	<0.1
Surrogates Dibromofluoromethane (Surrogate)	%	-	77	78
d4-1,2-dichloroethane (Surrogate)	%	-	87	83
d8-toluene (Surrogate)	%	-	82	80
Bromofluorobenzene (Surrogate)	%	-	78	71
Totals				
Total Xylenes	mg/kg	0.3	-	<0.3
Total BTEX	mg/kg	0.6	-	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	ested: 14/2/20	19		
TRH C6-C10	mg/kg	25	-	-
TRH C6-C9	mg/kg	20	-	-
Surrogates				
Dibromofluoromethane (Surrogate)	%	-	-	-
d4-1,2-dichloroethane (Surrogate)	%	-	-	-
d8-toluene (Surrogate)	%	-	-	-
Bromofluorobenzene (Surrogate)	%	-	-	-
VPH F Bands				

 Benzene (F0)
 mg/kg
 0.1

 TRH C6-C10 minus BTEX (F1)
 mg/kg
 25

	\$	mple Number Sample Matrix Sample Date Sample Name	SE189065.017 Soil 07 Feb 2019 TRIP SPIKE	SE189065.018 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR		
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested: 1	8/2/2019		
TRH C10-C14	mg/kg	20	-	<20
TRH C15-C28	mg/kg	45	-	<45
TRH C29-C36	mg/kg	45	-	<45
TRH C37-C40	mg/kg	100	-	<100
TRH C10-C36 Total	mg/kg	110	-	<110
TRH C10-C40 Total (F bands)	mg/kg	210	-	<210

TRH F Bands

TRH >C10-C16	mg/kg	25	-	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	-	<25
TRH >C16-C34 (F3)	mg/kg	90	-	<90
TRH >C34-C40 (F4)	mg/kg	120	-	<120

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420 Tested: 18/2/2019

Naphthalene	mg/kg	0.1	-	-
2-methylnaphthalene	mg/kg	0.1	-	-
1-methylnaphthalene	mg/kg	0.1	-	-
Acenaphthylene	mg/kg	0.1	-	-
Acenaphthene	mg/kg	0.1	-	-
Fluorene	mg/kg	0.1	-	-
Phenanthrene	mg/kg	0.1	-	-
Anthracene	mg/kg	0.1	-	-
Fluoranthene	mg/kg	0.1	-	-
Pyrene	mg/kg	0.1	-	-
Benzo(a)anthracene	mg/kg	0.1	-	-
Chrysene	mg/kg	0.1	-	-
Benzo(b&j)fluoranthene	mg/kg	0.1	-	-
Benzo(k)fluoranthene	mg/kg	0.1	-	-
Benzo(a)pyrene	mg/kg	0.1	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-	-
Dibenzo(ah)anthracene	mg/kg	0.1	-	-
Benzo(ghi)perylene	mg/kg	0.1	-	-
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	-	-
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	-	-
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	-	-
Total PAH (18)	mg/kg	0.8	-	-
Total PAH (NEPM/WHO 16)	mg/kg	0.8	-	-

Surrogates

d5-nitrobenzene (Surrogate)	%	-	-	-
2-fluorobiphenyl (Surrogate)	%	-	-	-
d14-p-terphenyl (Surrogate)	%	-	-	-

OC Pesticides in Soil Method: AN420 Tested: 18/2/2019

Hexachlorobenzene (HCB)	mg/kg	0.1	-	-
Alpha BHC	mg/kg	0.1	-	-
Lindane	mg/kg	0.1	-	-
Heptachlor	mg/kg	0.1	-	-
Aldrin	mg/kg	0.1	-	-
Beta BHC	mg/kg	0.1	-	-
Delta BHC	mg/kg	0.1	-	-
Heptachlor epoxide	mg/kg	0.1	-	-
o,p'-DDE	mg/kg	0.1	-	-
Alpha Endosulfan	mg/kg	0.2	-	-
Gamma Chlordane	mg/kg	0.1	-	-
Alpha Chlordane	mg/kg	0.1	-	-
trans-Nonachlor	mg/kg	0.1	-	-
p,p'-DDE	mg/kg	0.1	-	-

			s	Sample Number Sample Matrix Sample Date Sample Name		SE189065.018 Soil 07 Feb 2019 TRIP BLANK
Parameter			Units	LOR		
OC Pesticides in Soil	Method: AN420	Tested: 14/2/2019	(continued)			
Dieldrin			mg/kg	0.2	-	-
Endrin			mg/kg	0.2	-	-
o,p'-DDD			mg/kg	0.1	-	-
o,p'-DDT			mg/kg	0.1	-	-
Beta Endosulfan			mg/kg	0.2	-	-
p,p'-DDD			mg/kg	0.1	-	-
p,p'-DDT			mg/kg	0.1	-	-
Endosulfan sulphate			mg/kg	0.1	-	-
Endrin Aldehyde			mg/kg	0.1	-	-
Methoxychlor			mg/kg	0.1	-	-
Endrin Ketone			mg/kg	0.1	-	-
Isodrin			mg/kg	0.1	-	-
Mirex			mg/kg	0.1	-	-
Total CLP OC Pesticides			mg/kg	1	-	-

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-

OP Pesticides in Soil Method: AN420 Tested: 18/2/2019

814		0.5		
Dichlorvos	mg/kg	0.5	-	-
Dimethoate	mg/kg	0.5	-	-
Diazinon (Dimpylate)	mg/kg	0.5	-	-
Fenitrothion	mg/kg	0.2	-	-
Malathion	mg/kg	0.2	-	-
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	-	-
Parathion-ethyl (Parathion)	mg/kg	0.2	-	-
Bromophos Ethyl	mg/kg	0.2	-	-
Methidathion	mg/kg	0.5	-	-
Ethion	mg/kg	0.2	-	-
Azinphos-methyl (Guthion)	mg/kg	0.2	-	-
Total OP Pesticides*	mg/kg	1.7	-	-

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	-	-
d14-p-terphenyl (Surrogate)	%	-	-	-

	Sample Number Sample Matrix Sample Date Sample Name		SE189065.017 Soil 07 Feb 2019 TRIP SPIKE	SE189065.018 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR		
PCBs in Soil Method: AN420 Tested: 18/2/2019				
Arochlor 1016	mg/kg	0.2	-	-
Arochlor 1221	mg/kg	0.2	-	-
Arochlor 1232	mg/kg	0.2	-	-
Arochlor 1242	mg/kg	0.2	-	-
Arochlor 1248	mg/kg	0.2	-	-
Arochlor 1254	mg/kg	0.2	-	-
Arochlor 1260	mg/kg	0.2	-	-
Arochlor 1262	mg/kg	0.2	-	-
Arochlor 1268	mg/kg	0.2	-	-
Total PCBs (Arochlors)	mg/kg	1	-	-
Surrogates		· · ·		
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 18/2/2019

Arsenic, As	mg/kg	1	-	-
Cadmium, Cd	mg/kg	0.3	-	-
Chromium, Cr	mg/kg	0.3	-	-
Copper, Cu	mg/kg	0.5	-	-
Nickel, Ni	mg/kg	0.5	-	-
Lead, Pb	mg/kg	1	-	-
Zinc, Zn	mg/kg	2	-	-

Mercury in Soil Method: AN312 Tested: 18/2/2019

Mercury mg/kg 0.05		
Mercury mg/kg 0.05	-	-

Moisture Content	Method: AN002	Tested: 18/2/2019

% Moisture	%w/w	0.5	-	<0.5

	S	nple Number ample Matrix Sample Date ample Name	SE189065.017 Soil 07 Feb 2019 TRIP SPIKE	SE189065.018 Soil 07 Feb 2019 TRIP BLANK
Parameter	Units	LOR		
Trace Metals (Dissolved) in Water by ICPMS Method: AN318	Tested: 14/2	2/2019		
Arsenic, As	µg/L	1	-	-
Cadmium, Cd	µg/L	0.1	-	-
Chromium, Cr	µg/L	1	-	-
Copper, Cu	µg/L	1	-	-
Lead, Pb	µg/L	1	-	-
Nickel, Ni	μg/L	1	-	-
Zinc, Zn	µg/L	5	-	-

Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 15/2/2019

Mercury mg/l 0.0001					
	Mercury	mg/L	0.0001	-	-

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Mercury	LB166839	mg/L	0.0001	<0.0001	90%	75%

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB167057	mg/kg	0.05	<0.05	0%	88%	102%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD
	Reference			
% Moisture	LB167055	%w/w	0.5	14%

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Hexachlorobenzene (HCB)	LB167053	mg/kg	0.1	<0.1	0%	NA
Alpha BHC	LB167053	mg/kg	0.1	<0.1	0%	NA
Lindane	LB167053	mg/kg	0.1	<0.1	0%	NA
Heptachlor	LB167053	mg/kg	0.1	<0.1	0%	124%
Aldrin	LB167053	mg/kg	0.1	<0.1	0%	125%
Beta BHC	LB167053	mg/kg	0.1	<0.1	0%	NA
Delta BHC	LB167053	mg/kg	0.1	<0.1	0%	113%
Heptachlor epoxide	LB167053	mg/kg	0.1	<0.1	0%	NA
o,p'-DDE	LB167053	mg/kg	0.1	<0.1	0%	NA
Alpha Endosulfan	LB167053	mg/kg	0.2	<0.2	0%	NA
Gamma Chlordane	LB167053	mg/kg	0.1	<0.1	0%	NA
Alpha Chlordane	LB167053	mg/kg	0.1	<0.1	0%	NA
trans-Nonachlor	LB167053	mg/kg	0.1	<0.1	0%	NA
p,p'-DDE	LB167053	mg/kg	0.1	<0.1	0%	NA
Dieldrin	LB167053	mg/kg	0.2	<0.2	0%	124%
Endrin	LB167053	mg/kg	0.2	<0.2	0%	114%
o,p'-DDD	LB167053	mg/kg	0.1	<0.1	0%	NA
o,p'-DDT	LB167053	mg/kg	0.1	<0.1	0%	NA
Beta Endosulfan	LB167053	mg/kg	0.2	<0.2	0%	NA
p,p'-DDD	LB167053	mg/kg	0.1	<0.1	0%	NA
p,p'-DDT	LB167053	mg/kg	0.1	<0.1	0%	108%
Endosulfan sulphate	LB167053	mg/kg	0.1	<0.1	0%	NA
Endrin Aldehyde	LB167053	mg/kg	0.1	<0.1	0%	NA
Methoxychlor	LB167053	mg/kg	0.1	<0.1	0%	NA
Endrin Ketone	LB167053	mg/kg	0.1	<0.1	0%	NA
Isodrin	LB167053	mg/kg	0.1	<0.1	0%	NA
Mirex	LB167053	mg/kg	0.1	<0.1	0%	NA
Total CLP OC Pesticides	LB167053	mg/kg	1	<1	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB167053	%	-	100%	4%	90%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Dichlorvos	LB167053	mg/kg	0.5	<0.5	0%	105%
Dimethoate	LB167053	mg/kg	0.5	<0.5	0%	NA
Diazinon (Dimpylate)	LB167053	mg/kg	0.5	<0.5	0%	107%
Fenitrothion	LB167053	mg/kg	0.2	<0.2	0%	NA
Malathion	LB167053	mg/kg	0.2	<0.2	0%	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB167053	mg/kg	0.2	<0.2	0%	95%
Parathion-ethyl (Parathion)	LB167053	mg/kg	0.2	<0.2	0%	NA
Bromophos Ethyl	LB167053	mg/kg	0.2	<0.2	0%	NA
Methidathion	LB167053	mg/kg	0.5	<0.5	0%	NA
Ethion	LB167053	mg/kg	0.2	<0.2	0%	105%
Azinphos-methyl (Guthion)	LB167053	mg/kg	0.2	<0.2	0%	NA
Total OP Pesticides*	LB167053	mg/kg	1.7	<1.7	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
2-fluorobiphenyl (Surrogate)	LB167053	%	-	104%	0%	102%
d14-p-terphenyl (Surrogate)	LB167053	%	-	104%	2%	98%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB167053	mg/kg	0.1	<0.1	0%	109%	108%
2-methylnaphthalene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB167053	mg/kg	0.1	<0.1	0 - 15%	NA	NA
Acenaphthylene	LB167053	mg/kg	0.1	<0.1	0%	120%	111%
Acenaphthene	LB167053	mg/kg	0.1	<0.1	0%	107%	112%
Fluorene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Phenanthrene	LB167053	mg/kg	0.1	<0.1	5 - 18%	116%	112%
Anthracene	LB167053	mg/kg	0.1	<0.1	0%	111%	108%
Fluoranthene	LB167053	mg/kg	0.1	<0.1	0 - 5%	106%	105%
Pyrene	LB167053	mg/kg	0.1	<0.1	0 - 4%	104%	104%
Benzo(a)anthracene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Chrysene	LB167053	mg/kg	0.1	<0.1	0 - 9%	NA	NA
Benzo(b&j)fluoranthene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(k)fluoranthene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(a)pyrene	LB167053	mg/kg	0.1	<0.1	0%	108%	104%
Indeno(1,2,3-cd)pyrene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Dibenzo(ah)anthracene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(ghi)perylene	LB167053	mg/kg	0.1	<0.1	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>LB167053</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=0<>	LB167053	TEQ (mg/kg)	0.2	<0.2	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>LB167053</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0%</td><td>NA</td><td>NA</td></lor=lor<>	LB167053	TEQ (mg/kg)	0.3	<0.3	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>LB167053</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=lor>	LB167053	TEQ (mg/kg)	0.2	<0.2	0%	NA	NA
Total PAH (18)	LB167053	mg/kg	0.8	<0.8	0 - 6%	NA	NA
Total PAH (NEPM/WHO 16)	LB167053	mg/kg	0.8	<0.8			

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d5-nitrobenzene (Surrogate)	LB167053	%	-	100%	0 - 4%	98%	92%
2-fluorobiphenyl (Surrogate)	LB167053	%	-	104%	0 - 2%	102%	98%
d14-p-terphenyl (Surrogate)	LB167053	%	-	104%	2 - 4%	98%	94%

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Arochlor 1016	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1221	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1232	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1242	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1248	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1254	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1260	LB167053	mg/kg	0.2	<0.2	0%	102%
Arochlor 1262	LB167053	mg/kg	0.2	<0.2	0%	NA
Arochlor 1268	LB167053	mg/kg	0.2	<0.2	0%	NA
Total PCBs (Arochlors)	LB167053	mg/kg	1	<1	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB167053	%	-	100%	4%	99%

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB167056	mg/kg	1	<1	23%	108%	80%
Cadmium, Cd	LB167056	mg/kg	0.3	<0.3	0%	101%	91%
Chromium, Cr	LB167056	mg/kg	0.3	<0.3	2%	107%	88%
Copper, Cu	LB167056	mg/kg	0.5	<0.5	1%	97%	91%
Nickel, Ni	LB167056	mg/kg	0.5	<0.5	11%	99%	86%
Lead, Pb	LB167056	mg/kg	1	<1	140%	94%	86%
Zinc, Zn	LB167056	mg/kg	2	<2.0	2%	103%	79%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Arsenic, As	LB166853	µg/L	1	<1	91%	96%
Cadmium, Cd	LB166853	µg/L	0.1	<0.1	106%	105%
Chromium, Cr	LB166853	µg/L	1	<1	112%	106%
Copper, Cu	LB166853	µg/L	1	<1	115%	105%
Lead, Pb	LB166853	µg/L	1	<1	104%	99%
Nickel, Ni	LB166853	µg/L	1	<1	109%	99%
Zinc, Zn	LB166853	µg/L	5	<5	110%	109%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB167053	mg/kg	20	<20	0 - 22%	108%	103%
TRH C15-C28	LB167053	mg/kg	45	<45	0 - 25%	100%	90%
TRH C29-C36	LB167053	mg/kg	45	<45	0%	80%	98%
TRH C37-C40	LB167053	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB167053	mg/kg	110	<110	0 - 8%	NA	NA
TRH C10-C40 Total (F bands)	LB167053	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16	LB167053	mg/kg	25	<25	0 - 20%	103%	95%
TRH >C10-C16 - Naphthalene (F2)	LB167053	mg/kg	25	<25	0 - 20%	NA	NA
TRH >C16-C34 (F3)	LB167053	mg/kg	90	<90	0%	93%	105%
TRH >C34-C40 (F4)	LB167053	mg/kg	120	<120	0%	80%	NA

VOC's in Soil Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene	LB167052	mg/kg	0.1	<0.1	0%	83%	83%
Toluene	LB167052	mg/kg	0.1	<0.1	0%	81%	81%
Ethylbenzene	LB167052	mg/kg	0.1	<0.1	0%	83%	82%
m/p-xylene	LB167052	mg/kg	0.2	<0.2	0%	84%	85%
o-xylene	LB167052	mg/kg	0.1	<0.1	0%	82%	82%

Polycyclic VOCs

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB167052	mg/kg	0.1	<0.1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB167052	%	-	78%	1 - 5%	85%	81%
d4-1,2-dichloroethane (Surrogate)	LB167052	%	-	85%	2 - 3%	87%	94%
d8-toluene (Surrogate)	LB167052	%	-	80%	2 - 3%	88%	88%
Bromofluorobenzene (Surrogate)	LB167052	%	-	77%	0 - 2%	84%	86%

Totals

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Xylenes	LB167052	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX	LB167052	mg/kg	0.6	<0.6	0%	NA	NA

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB167052	mg/kg	25	<25	0%	87%	88%
TRH C6-C9	LB167052	mg/kg	20	<20	0%	88%	83%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB167052	%	-	78%	1 - 5%	85%	81%
d4-1,2-dichloroethane (Surrogate)	LB167052	%	-	85%	2 - 3%	87%	94%
d8-toluene (Surrogate)	LB167052	%	-	80%	2 - 3%	88%	88%
Bromofluorobenzene (Surrogate)	LB167052	%	-	77%	0 - 2%	84%	86%

VPH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB167052	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB167052	mg/kg	25	<25	0%	98%	100%

METHOD SUMMARY

- METHOD	- METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

METHOD SUMMARY

- METHOD -AN433

METHODOLOGY SUMMARY

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES _

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance - The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAIL	LS
Contact	Jake Duck	Manager	Huong Crawford
Client	VALLEY CIVILAB PTY LTD	Laboratory	SGS Alexandria Environmental
Address	PO BOX 3127 THORNTON NSW 2322	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4966 1844	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	jake.duck@vclab.com.au	Email	au.environmental.sydney@sgs.com
Project	P1678-KOTARA	SGS Reference	SE189065 R0
Order Number	03787	Date Received	11 Feb 2019
Samples	18	Date Reported	18 Feb 2019

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

1 item

SAMPLE SUMMARY	
----------------	--

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	18 Soil	
Date documentation received	11/2/2019	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	8.7°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

15 Australia 15 Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Sample Name	O - manda Ma	00 0 (
	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RIN	SE189065.016	LB166839	07 Feb 2019	11 Feb 2019	07 Mar 2019	13 Feb 2019	07 Mar 2019	15 Feb 2019
ercury in Soil							Method: I	ME-(AU)-[ENV]/
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
3H4_0.15-0.25	SE189065.001	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
3H4_1.2-1.3	SE189065.002	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
3H5_0.15-0.25	SE189065.003	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
BH5_0.8-1.0	SE189065.004	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
3H6_0.15-0.25	SE189065.005	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H6_0.7-0.8	SE189065.006	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H7_0.15-0.25	SE189065.007	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H7_0.7-0.8	SE189065.008	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H8_0.15-0.25	SE189065.009	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H8_0.8-0.9	SE189065.010	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H11_0.15-0.25	SE189065.011	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H11_1.3-1.5	SE189065.012	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H13_0.15-0.25	SE189065.013	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
H13_0.6-0.7	SE189065.014	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
UP 1	SE189065.015	LB167057	07 Feb 2019	11 Feb 2019	07 Mar 2019	14 Feb 2019	07 Mar 2019	18 Feb 201
bisture Content							Method: I	ME-(AU)-[ENV]
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H4_0.15-0.25	SE189065.001	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
3H4_1.2-1.3	SE189065.002	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H5_0.15-0.25	SE189065.003	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H5_0.8-1.0	SE189065.004	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
	SE189065.005	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H6_0.7-0.8	SE189065.006	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H7_0.15-0.25	SE189065.007	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H7_0.7-0.8	SE189065.008	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H8_0.15-0.25	SE189065.009	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H8_0.8-0.9	SE189065.010	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H11_0.15-0.25	SE189065.011	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H11_1.3-1.5	SE189065.012	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
8H13_0.15-0.25	SE189065.013	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
H13_0.6-0.7	SE189065.014	LB167055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	19 Feb 2019	18 Feb 201
UP 1		LB167055						
RIP BLANK	SE189065.015 SE189065.018	LB167055	07 Feb 2019 07 Feb 2019	11 Feb 2019 11 Feb 2019	21 Feb 2019 21 Feb 2019	14 Feb 2019 14 Feb 2019	19 Feb 2019 19 Feb 2019	18 Feb 201 18 Feb 201
	3E169005.018	LB107055	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019		
C Pesticides in Soil								ME-(AU)-[ENV]
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
H4_0.15-0.25	SE189065.001	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H4_1.2-1.3	SE189065.002	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H5_0.15-0.25	SE189065.003	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H5_0.8-1.0	SE189065.004	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H6_0.15-0.25	SE189065.005	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H6_0.7-0.8	SE189065.006	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H7_0.15-0.25	SE189065.007	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H7_0.7-0.8	SE189065.008	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H8_0.15-0.25	SE189065.009	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H8_0.8-0.9	SE189065.010	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H11_0.15-0.25	SE189065.011	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H11_1.3-1.5	SE189065.012	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H13_0.15-0.25	SE189065.013	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
H13_0.6-0.7	SE189065.014	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
UP 1	SE189065.015	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201
RIP BLANK	SE189065.018	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 201

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OP Pesticides in Soil (continued)

OP Pesticides in Soil (cor	ntinued)						Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.15-0.25	SE189065.001	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH4_1.2-1.3	SE189065.002	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.15-0.25	SE189065.003	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.8-1.0	SE189065.004	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.15-0.25	SE189065.005	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.7-0.8	SE189065.006	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.15-0.25	SE189065.007	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.7-0.8	SE189065.008	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.15-0.25	SE189065.009	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.8-0.9	SE189065.010	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_0.15-0.25	SE189065.011	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 1	SE189065.015	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189065.018	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
AH (Polynuclear Aroma	tic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.15-0.25	SE189065.001	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH4_1.2-1.3	SE189065.002	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.15-0.25	SE189065.003	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.8-1.0	SE189065.004	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.15-0.25	SE189065.005	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.7-0.8	SE189065.006	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.15-0.25	SE189065.007	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.7-0.8	SE189065.008	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.15-0.25	SE189065.009	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.8-0.9	SE189065.010	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_0.15-0.25	SE189065.011	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 1	SE189065.015	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189065.018	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
CBs in Soil							Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.15-0.25	SE189065.001	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH4_1.2-1.3	SE189065.002	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.15-0.25	SE189065.003	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.8-1.0	SE189065.004	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

BH11_0.15-0.25	SE189065.011	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 1	SE189065.015	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189065.018	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
Total Recoverable Eleme	nts in Soil/Waste Solids/Mat	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Total Recoverable Eleme Sample Name	<mark>nts in Soil/Waste Solids/Mat</mark> Sample No.	erials by ICPOES QC Ref	Sampled	Received	Extraction Due	Extracted	Method: ME-(AU Analysis Due)- <mark>[ENV]AN040/AN320</mark> Analysed
		•	Sampled 07 Feb 2019	Received 11 Feb 2019	Extraction Due 06 Aug 2019	Extracted 14 Feb 2019	•	
Sample Name	Sample No.	QC Ref					Analysis Due	Analysed
Sample Name BH4_0.15-0.25	Sample No. SE189065.001	QC Ref LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	Analysis Due 06 Aug 2019	Analysed 18 Feb 2019
Sample Name BH4_0.15-0.25 BH4_1.2-1.3	Sample No. SE189065.001 SE189065.002	QC Ref LB167056 LB167056	07 Feb 2019 07 Feb 2019	11 Feb 2019 11 Feb 2019	06 Aug 2019 06 Aug 2019	14 Feb 2019 14 Feb 2019	Analysis Due 06 Aug 2019 06 Aug 2019	Analysed 18 Feb 2019 18 Feb 2019

11 Feb 2019

21 Feb 2019

14 Feb 2019

26 Mar 2019

BH6 0.15-0.25

BH7 0.15-0.25

BH8_0.15-0.25

BH6_0.7-0.8

BH7_0.7-0.8

BH8 0.8-0.9

SE189065.005

SE189065.006

SE189065.007

SE189065.008

SE189065.009

SE189065.010

LB167053

LB167053

LB167053

LB167053

LB167053

LB167053

07 Feb 2019

18 Feb 2019

Method: ME-(AU)-[ENV]AN040/AN320

13 Feb 2019

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES (continued)

SE189065.016

LB166853

07 Feb 2019

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.15-0.25	SE189065.005	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH6_0.7-0.8	SE189065.006	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH7_0.15-0.25	SE189065.007	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH7_0.7-0.8	SE189065.008	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH8_0.15-0.25	SE189065.009	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH8_0.8-0.9	SE189065.010	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH11_0.15-0.25	SE189065.011	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
DUP 1	SE189065.015	LB167056	07 Feb 2019	11 Feb 2019	06 Aug 2019	14 Feb 2019	06 Aug 2019	18 Feb 2019
Trace Metals (Dissolved)	in Water by ICPMS						Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

11 Feb 2019

06 Aug 2019

13 Feb 2019

06 Aug 2019

TRH (Total Recoverable Hydrocarbons) in Soil

TRH (Total Recoverable H	Hydrocarbons) in Soil				RH (Total Recoverable Hydrocarbons) in Soil Method: ME-(/							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed				
BH4_0.15-0.25	SE189065.001	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH4_1.2-1.3	SE189065.002	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH5_0.15-0.25	SE189065.003	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH5_0.8-1.0	SE189065.004	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH6_0.15-0.25	SE189065.005	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH6_0.7-0.8	SE189065.006	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH7_0.15-0.25	SE189065.007	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH7_0.7-0.8	SE189065.008	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH8_0.15-0.25	SE189065.009	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH8_0.8-0.9	SE189065.010	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH11_0.15-0.25	SE189065.011	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH11_1.3-1.5	SE189065.012	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH13_0.15-0.25	SE189065.013	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
BH13_0.6-0.7	SE189065.014	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
DUP 1	SE189065.015	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				
TRIP BLANK	SE189065.018	LB167053	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019				

RIN

VOC's in Soil	OC's in Soil Method: ME-(AU)-[ENV]AN433							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.15-0.25	SE189065.001	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH4_1.2-1.3	SE189065.002	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.15-0.25	SE189065.003	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.8-1.0	SE189065.004	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.15-0.25	SE189065.005	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.7-0.8	SE189065.006	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.15-0.25	SE189065.007	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.7-0.8	SE189065.008	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.15-0.25	SE189065.009	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.8-0.9	SE189065.010	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_0.15-0.25	SE189065.011	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 1	SE189065.015	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP SPIKE	SE189065.017	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189065.018	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
/olatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN43								

Volatile Petroleum Hydrocarbons in Soil

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH4_0.15-0.25	SE189065.001	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH4_1.2-1.3	SE189065.002	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.15-0.25	SE189065.003	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH5_0.8-1.0	SE189065.004	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydrod	carbons in Soil (continued)						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH6_0.15-0.25	SE189065.005	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH6_0.7-0.8	SE189065.006	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.15-0.25	SE189065.007	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH7_0.7-0.8	SE189065.008	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.15-0.25	SE189065.009	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH8_0.8-0.9	SE189065.010	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_0.15-0.25	SE189065.011	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH11_1.3-1.5	SE189065.012	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.15-0.25	SE189065.013	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
BH13_0.6-0.7	SE189065.014	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
DUP 1	SE189065.015	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP SPIKE	SE189065.017	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019
TRIP BLANK	SE189065.018	LB167052	07 Feb 2019	11 Feb 2019	21 Feb 2019	14 Feb 2019	26 Mar 2019	18 Feb 2019

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	95
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	105
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	106
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	103
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	105
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	92
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	103
P Pesticides in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	102
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	100
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	102
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	102
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	102
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	100
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	106
d14-p-terphenyl (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	102
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	100
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	102
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	102
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	100
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	102
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	90
AH (Polynuclear Aromatic Hydrocarbons) in Soll				Method: M	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH4_0.15-0.25	SE189065.001	%	70 - 130%	102
	BH4_1.2-1.3	SE189065.002	%	70 - 130%	100
	BH5_0.15-0.25	SE189065.003	%	70 - 130%	100
	BH5_0.8-1.0	SE189065.004	%	70 - 130%	102
	BH6_0.15-0.25	SE189065.005	%	70 - 130%	102
	BH6_0.7-0.8	SE189065.006	%	70 - 130%	102
	BH7_0.15-0.25	SE189065.007	%	70 - 130%	102
	BH7_0.7-0.8	SE189065.008	%	70 - 130%	102
	BH8_0.15-0.25	SE189065.009	%	70 - 130%	102
	BH8_0.8-0.9	SE189065.010	%	70 - 130%	102
	BH11_0.15-0.25	SE189065.011	%	70 - 130%	100
	BH11_1.3-1.5	SE189065.012	%	70 - 130%	102
	BH13_0.15-0.25	SE189065.013	%	70 - 130%	106
	BH13_0.6-0.7	SE189065.014	%	70 - 130%	100
d14-p-terphenyl (Surrogate)	DUP 1	SE189065.015	%	70 - 130%	98
	BH4_0.15-0.25	SE189065.001	%	70 - 130%	102
	BH4_1.2-1.3	SE189065.002	%	70 - 130%	102
	BH5_0.15-0.25	SE189065.003	%	70 - 130%	100
	BH5_0.8-1.0	SE189065.004	%	70 - 130%	100
	BH6_0.15-0.25	SE189065.005	%	70 - 130%	102
	BH6_0.7-0.8	SE189065.006	%	70 - 130%	102
	BH7_0.15-0.25	SE189065.007	%	70 - 130%	102
	BH7_0.7-0.8	SE189065.008	%	70 - 130%	100
	BH8_0.15-0.25	SE189065.009	%	70 - 130%	100
	BH8_0.8-0.9	SE189065.010	%	70 - 130%	102
	BH11_0.15-0.25	SE189065.011 SE189065.012	%	70 - 130% 70 - 130%	102
	BH11_1.3-1.5		%		104
	BH13_0.15-0.25	SE189065.013 SE189065.014	%	70 - 130% 70 - 130%	90 98
	BH13_0.6-0.7 DUP 1	SE189065.014	%	70 - 130%	98
	BH4_0.15-0.25	SE189065.001	%	70 - 130%	96
d5_nitrobenzene (Surrogate)	DF14_0.10-0.20				
d5-nitrobenzene (Surrogate)	BH4 12-13	SE189065 002			
d5-nitrobenzene (Surrogate)	BH4_1.2-1.3	SE189065.002	%	70 - 130%	94
d5-nitrobenzene (Surrogate)	BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0	SE189065.002 SE189065.003 SE189065.004	%%	70 - 130% 70 - 130% 70 - 130%	94 90 92

18/2/2019

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Parameter Units Criteria Sample Name Sample Numb d5-nitrobenzene (Surrogate) BH6 0.7-0.8 SE189065.006 % 70 - 130% 96 BH7_0.15-0.25 SE189065.007 70 - 130% 96 % BH7 0.7-0.8 SE189065.008 % 70 - 130% 96 BH8_0.15-0.25 SE189065.009 70 - 130% 94 % BH8_0.8-0.9 SE189065.010 70 - 130% 96 % BH11 0.15-0.25 SE189065.011 70 - 130% 92 % BH11_1.3-1.5 SE189065.012 % 70 - 130% 96 BH13_0.15-0.25 SE189065.013 % 70 - 130% 82 BH13 0.6-0.7 SE189065.014 % 70 - 130% 98 DUP 1 SE189065.015 70 - 130% 92 % PCBs in Soi Method: ME-(AU)-[ENV]AN420 Sample Name Sample Numb Units Criteria Recovery % Parameter Tetrachloro-m-xylene (TCMX) (Surrogate) BH4 0.15-0.25 SE189065.001 % 60 - 130% 95 BH5_0.15-0.25 SE189065.003 % 60 - 130% 105 BH6_0.15-0.25 SE189065.005 60 - 130% 106 % BH7 0.15-0.25 SE189065.007 % 60 - 130% 103 BH8_0.15-0.25 SE189065.009 60 - 130% 105 % BH11_0.15-0.25 SE189065.011 60 - 130% 92 % BH13 0.15-0.25 SE189065.013 % 60 - 130% 103 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Numb Units Criteria Recovery % Parameter Sample Name Bromofluorobenzene (Surrogate) BH4_0.15-0.25 SE189065.001 60 - 130% 80 % BH4 1.2-1.3 SE189065.002 % 60 - 130% 75 BH5_0.15-0.25 SE189065.003 % 60 - 130% 71 BH5 0.8-1.0 SE189065.004 60 - 130% 71 % BH6 0.15-0.25 SE189065.005 % 60 - 130% 71 BH6_0.7-0.8 SE189065.006 77 % 60 - 130% BH7_0.15-0.25 SE189065.007 60 - 130% 73 % BH7 0.7-0.8 SE189065.008 % 60 - 130% 78 BH8_0.15-0.25 SE189065.009 % 60 - 130% 74 BH8 0.8-0.9 77 SE189065.010 60 - 130% % BH11 0.15-0.25 SE189065.011 % 60 - 130% 70 BH11 1.3-1.5 SE189065.012 % 60 - 130% 72 BH13_0.15-0.25 SE189065.013 60 - 130% 80 % BH13 0.6-0.7 SE189065.014 % 60 - 130% 89 DUP 1 SE189065.015 60 - 130% 78 % TRIP SPIKE SE189065.017 60 - 130% % 78 TRIP BLANK SE189065.018 % 60 - 130% 71 d4-1,2-dichloroethane (Surrogate) BH4_0.15-0.25 SE189065.001 60 - 130% 87 % BH4_1.2-1.3 SE189065.002 60 - 130% 90 % BH5 0.15-0.25 SE189065.003 % 60 - 130% 95 BH5_0.8-1.0 88 SE189065.004 % 60 - 130% BH6_0.15-0.25 SE189065.005 60 - 130% % 83 BH6 0.7-0.8 SE189065.006 % 60 - 130% 83 BH7_0.15-0.25 93 SE189065.007 % 60 - 130% BH7 0.7-0.8 SE189065.008 % 60 - 130% 96 BH8 0.15-0.25 SE189065.009 % 60 - 130% 93 BH8_0.8-0.9 SE189065.010 % 60 - 130% 93 SE189065.011 60 - 130% BH11_0.15-0.25 89 % BH11_1.3-1.5 SE189065.012 % 60 - 130% 92 SE189065.013 BH13_0.15-0.25 % 60 - 130% 87 BH13_0.6-0.7 SE189065.014 60 - 130% 100 % DUP 1 SE189065.015 % 60 - 130% 91 TRIP SPIKE SE189065.017 60 - 130% 87 % TRIP BLANK SE189065.018 60 - 130% 83 % d8-toluene (Surrogate) BH4 0.15-0.25 SE189065.001 % 60 - 130% 93 BH4_1.2-1.3 SE189065.002 % 60 - 130% 85 BH5_0.15-0.25 SE189065.003 % 60 - 130% 89 BH5 0.8-1.0 SE189065.004 % 60 - 130% 86 BH6_0.15-0.25 SE189065.005 60 - 130% % 84

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC's in Soil (continued)				Method: ME	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH6_0.7-0.8	SE189065.006	%	60 - 130%	83
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	86
	BH7_0.7-0.8	SE189065.008	%	60 - 130%	89
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	85
	BH8_0.8-0.9	SE189065.010	%	60 - 130%	87
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	84
	BH11_1.3-1.5	SE189065.012	%	60 - 130%	90
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	87
	BH13_0.6-0.7	SE189065.014	%	60 - 130%	102
	DUP 1	SE189065.015	%	60 - 130%	88
	TRIP SPIKE	SE189065.017	%	60 - 130%	82
	TRIP BLANK	SE189065.018	%	60 - 130%	80
Dibromofluoromethane (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	86
	BH4_1.2-1.3	SE189065.002	%	60 - 130%	81
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	83
	BH5_0.8-1.0	SE189065.004	%	60 - 130%	80
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	81
	BH6_0.7-0.8	SE189065.006	%	60 - 130%	79
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	83
	BH7_0.7-0.8	SE189065.008	%	60 - 130%	84
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	82
	BH8_0.8-0.9	SE189065.010	%	60 - 130%	83
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	81
	BH11_1.3-1.5	SE189065.012	%	60 - 130%	91
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	78
	BH13_0.6-0.7	SE189065.014	%	60 - 130%	95
	DUP 1	SE189065.015	%	60 - 130%	82
			21	00 1000/	
	TRIP SPIKE	SE189065.017	%	60 - 130%	77
			%	60 - 130%	78
olatile Petroleum Hydrocarbons in Soil	TRIP SPIKE	SE189065.017		60 - 130%	
· · · · · · · · · · · · · · · · · · ·	TRIP SPIKE	SE189065.017	% Units	60 - 130% Method: ME Criteria	78
Parameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001	% Units %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80
Parameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002	% Units % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75
Parameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003	% Units % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004	% Units % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71
Parameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005	% Units % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71
olatile Petroleum Hydrocarbons in Soll Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006	% Units % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 77
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 71 77 73
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 73 78
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 71 73 78 78 74
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.15-0.25 BH8_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 73 78 78 74 77
Parameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.16-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.16-0.25 BH6_0.15-0.25 BH1_0.15-0.25 BH8_0.8-0.9 BH11_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 71 73 78 78 74 77 70
Parameter	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2.1.3 BH5_0.15-0.25 BH5_0.8.1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH11_0.15-0.25 BH11_1.3-1.5	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 71 71 73 78 74 77 70 70 72
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.07-0.8 BH7_0.15-0.25 BH6_0.07-0.8 BH7_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25	SE189065.017 SE189065.018 Sample Number SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 73 78 74 77 70 72 80
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.15-0.25 BH4_0.15-0.25 BH7_0.7-0.8 BH3_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH13_0.8-0.7	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014	% %	60 - 130% Method: ME Criteria 60 - 130% 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 72 80 89
Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH8_0.15-0.25 BH4_0.7-0.8 BH8_0.15-0.25 BH4_0.15-0.25 BH1_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH13_0.15-0.25 BH13_0.6-0.7 DUP 1	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 73 78 74 74 77 70 72 80 89 78
Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.15-0.25 BH4_0.15-0.25 BH1_0.15-0.25 BH3_0.15-0.25 BH11_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.006 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.001	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130% 60 - 1	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 71 73 78 74 77 70 72 80 89 78 87
arameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH13_0.15-0.25 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.015 SE189065.001 SE189065.001 SE189065.001 SE189065.001	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 73 78 74 77 70 72 80 89 78 78 79 90
arameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH3_0.15-0.25 BH1_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH3_0.0-0.7 DUP 1 BH4_1.2-1.3 BH4_1.2-1.3 BH5_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.014 SE189065.014 SE189065.015 SE189065.014 SE189065.015 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.002 SE189065.003	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 73 78 74 77 70 72 80 89 78 87 89 78
arameter aromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH3_0.15-0.25 BH3_0.15-0.25 BH1_1.3-1.5 BH11_0.15-0.25 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25 BH3_0.5-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.18-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.009 SE189065.010 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.015 SE189065.016 SE189065.017 SE189065.018 SE189065.019 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.001 SE189065.001 SE189065.003 SE189065.003	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 70 72 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 80 80 80 80 80 80 80 80 8
arameter aromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH8_0.80.9 BH11_0.15-0.25 BH3_0.8-0.7 DUP 1 BH4_0.15-0.25 BH1_0.15-0.25 BH1_1.2-1.3 BH4_0.15-0.25 BH3_0.8-0.7 DUP 1 BH4_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.016 SE189065.017 SE189065.018 SE189065.019 SE189065.014 SE189065.015 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.001 SE189065.003 SE189065.004 SE189065.005	% Units % % % % % % % % % % % % % % % % % % %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A 80 75 71 71 71 71 73 78 74 77 70 72 80 89 78 89 78 89 78 89 78 89 78 89 78 89 78 89 89 89 89 89 89 89 89 89 8
arameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH1_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.15-0.25 BH1_0.0.8-0.7 DUP 1 BH4_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.0.8-0.7 DUP 1 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.10 BH6_0.15-0.25 BH5_0.8-1.0 BH6_0.07-0.8	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006	% Units % % % <td>60 - 130% Method: ME Criteria 60 - 130%</td> <td>78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 72 80 89 78 89 78 89 78 89 78 89 78 89 89 78 89 89 89 89 89 89 89 89 88 83 83 83 83</td>	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 72 80 89 78 89 78 89 78 89 78 89 78 89 89 78 89 89 89 89 89 89 89 89 88 83 83 83 83
arameter aromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH8_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH11_0.15-0.25 BH3_0.8-0.9 BH11_0.15-0.25 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH5_0.8-1.0 BH6_0.7-0.8 BH7_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007	% Units % <td>60 - 130% Method: ME Criteria 60 - 130%</td> <td>78 -(AU)-[ENV]A 80 75 71 71 71 71 71 73 78 74 77 70 72 80 89 89 78 87 90 95 88 83 83 83 93</td>	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A 80 75 71 71 71 71 71 73 78 74 77 70 72 80 89 89 78 87 90 95 88 83 83 83 93
arameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH6_0.15-0.25 BH6_0.7-0.8 BH7_0.16-0.25 BH6_0.15-0.25 BH6_0.15-0.25 BH7_0.15-0.25 BH1_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH13_0.6-0.7 DUP 1 BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH6_0.7-0.8	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.010 SE189065.013 SE189065.014 SE189065.003 SE189065.004 SE189065.005 SE189065.004 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.007 SE189065.007 SE189065.008	% Units % <td>60 - 130%</td> <td>78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 72 80 89 78 89 78 89 90 95 88 83 83 83 93 96</td>	60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 70 72 80 89 78 89 78 89 90 95 88 83 83 83 93 96
arameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2:1.3 BH5_0.15-0.25 BH4_1.2:1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH6_0.7:0.8 BH7_0.15-0.25 BH6_0.15-0.25 BH7_0.15-0.25 BH3_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.16-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH4_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.013 SE189065.001 SE189065.001 SE189065.003 SE189065.004 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.006 SE189065.007 SE189065.008 SE189065.009	% 10 %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A 80 75 71 71 71 71 73 78 74 74 77 73 78 80 89 78 89 78 89 78 89 78 89 78 89 89 78 89 89 78 89 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 80 80 80 80 80 80 80 80 8
Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH6_0.15-0.25 BH7_0.15-0.25 BH7_0.15-0.25 BH1_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.8-1.0 BH5_0.8-1.0 BH5_0.15-0.25 BH5_0.15-0.25 BH5_0.05-0.25 BH5_0.15-0.25 BH7_0.15-0.25 BH7_0.07-0.8 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.08-0.9	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.02 SE189065.03 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.006 SE189065.007 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.009 <td>% 10 %</td> <td>60 - 130% Method: ME Criteria 60 - 130%</td> <td>78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 77 73 78 74 77 70 72 80 89 78 89 78 89 89 78 89 89 88 83 83 83 83 93 96 93 93</td>	% 10 %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 77 73 78 74 77 70 72 80 89 78 89 78 89 89 78 89 89 88 83 83 83 83 93 96 93 93
Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH1_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH1_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH1_1_1.3-1.5 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.15-0.25 BH5_0.15-0.25 BH5_0.08-1.0 BH6_0.15-0.25 BH5_0.15-0.25 BH7_0.7-0.8 BH8_0.15-0.25 BH3_0.80-9 BH8_0.80-9 BH11_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.013 SE189065.001 SE189065.001 SE189065.003 SE189065.004 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.006 SE189065.007 SE189065.008 SE189065.009	% 10 %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 73 78 74 77 73 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 70 80 89 70 80 89 70 80 89 70 80 89 70 80 89 70 80 89 70 80 89 70 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 80 89 78 88 83 83 83 93 95 83 83 93 95 83 83 93 95 90 95 83 83 93 95 90 95 83 83 93 95 90 95 83 83 93 95 93 95 93 95 93 95 93 93 95 93 93 95 93 93 93 93 93 93 93 93 93 93
arameter	TRIP SPIKE TRIP BLANK Sample Name BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.8-1.0 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.15-0.25 BH6_0.15-0.25 BH7_0.15-0.25 BH7_0.15-0.25 BH1_0.15-0.25 BH11_0.15-0.25 BH11_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.8-1.0 BH5_0.8-1.0 BH5_0.15-0.25 BH5_0.15-0.25 BH5_0.05-0.25 BH5_0.15-0.25 BH7_0.15-0.25 BH7_0.07-0.8 BH8_0.15-0.25 BH8_0.15-0.25 BH8_0.08-0.9	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.007 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.02 SE189065.03 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.006 SE189065.007 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.009 <td>% 10 %</td> <td>60 - 130% Method: ME Criteria 60 - 130%</td> <td>78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 77 73 78 74 77 70 72 80 89 78 89 78 89 89 78 89 89 88 83 83 83 83 93 96 93 93</td>	% 10 %	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A Recovery 80 75 71 71 71 71 77 73 78 74 77 70 72 80 89 78 89 78 89 89 78 89 89 88 83 83 83 83 93 96 93 93
Parameter Bromofluorobenzene (Surrogate)	TRIP SPIKE TRIP BLANK BH4_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.7-0.8 BH7_0.7-0.8 BH1_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH1_0.15-0.25 BH3_0.15-0.25 BH3_0.15-0.25 BH1_1_1.3-1.5 BH3_0.6-0.7 DUP 1 BH4_0.15-0.25 BH5_0.15-0.25 BH4_1.2-1.3 BH5_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH4_0.15-0.25 BH5_0.8-1.0 BH6_0.15-0.25 BH5_0.15-0.25 BH5_0.15-0.25 BH6_0.15-0.25 BH7_0.7-0.8 BH8_0.16-0.25 BH3_0.8-0.9 BH8_0.8-0.9 BH11_0.15-0.25	SE189065.017 SE189065.018 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.006 SE189065.007 SE189065.008 SE189065.009 SE189065.010 SE189065.011 SE189065.012 SE189065.013 SE189065.014 SE189065.015 SE189065.015 SE189065.001 SE189065.002 SE189065.003 SE189065.004 SE189065.005 SE189065.007 SE189065.003 SE189065.004 SE189065.007 SE189065.007 SE189065.007 SE189065.007 SE189065.007 SE189065.007 SE189065.008 SE189065.009 SE189065.009 SE189065.001 SE189065.001 SE189065.001 SE189065.010 SE189065.010 SE189065.010 SE189065.010 </td <td>% Units %<td>60 - 130% Method: ME Criteria 60 - 130%</td><td>78 -(AU)-[ENV]A 80 75 71 71 71 73 78 74 77 73 78 74 77 70 72 80 89 78 87 90 95 88 83 83 93 96 93 93 88</td></td>	% Units % <td>60 - 130% Method: ME Criteria 60 - 130%</td> <td>78 -(AU)-[ENV]A 80 75 71 71 71 73 78 74 77 73 78 74 77 70 72 80 89 78 87 90 95 88 83 83 93 96 93 93 88</td>	60 - 130% Method: ME Criteria 60 - 130%	78 -(AU)-[ENV]A 80 75 71 71 71 73 78 74 77 73 78 74 77 70 72 80 89 78 87 90 95 88 83 83 93 96 93 93 88

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
	-				
d4-1,2-dichloroethane (Surrogate)	DUP 1	SE189065.015	%	60 - 130%	91
d8-toluene (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	93
	BH4_1.2-1.3	SE189065.002	%	60 - 130%	85
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	89
	BH5_0.8-1.0	SE189065.004	%	60 - 130%	86
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	84
	BH6_0.7-0.8	SE189065.006	%	60 - 130%	83
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	86
	BH7_0.7-0.8	SE189065.008	%	60 - 130%	89
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	85
	BH8_0.8-0.9	SE189065.010	%	60 - 130%	87
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	84
	BH11_1.3-1.5	SE189065.012	%	60 - 130%	90
	BH13_0.15-0.25	SE189065.013	%	60 - 130%	87
	BH13_0.6-0.7	SE189065.014	%	60 - 130%	102
	DUP 1	SE189065.015	%	60 - 130%	88
ibromofluoromethane (Surrogate)	BH4_0.15-0.25	SE189065.001	%	60 - 130%	86
	BH4_1.2-1.3	SE189065.002	%	60 - 130%	81
	BH5_0.15-0.25	SE189065.003	%	60 - 130%	83
	BH5_0.8-1.0	SE189065.004	%	60 - 130%	80
	BH6_0.15-0.25	SE189065.005	%	60 - 130%	81
	BH6_0.7-0.8	SE189065.006	%	60 - 130%	79
	BH7_0.15-0.25	SE189065.007	%	60 - 130%	83
	BH7_0.7-0.8	SE189065.008	%	60 - 130%	84
	BH8_0.15-0.25	SE189065.009	%	60 - 130%	82
	BH8_0.8-0.9	SE189065.010	%	60 - 130%	83
	BH11_0.15-0.25	SE189065.011	%	60 - 130%	81
		SE189065.012	%	60 - 130%	91
	BH13 0.15-0.25	SE189065.013	%	60 - 130%	78
	BH13 0.6-0.7	SE189065.014	%	60 - 130%	95
	DUP 1	SE189065.015	%	60 - 130%	82

METHOD BLANKS

SE189065 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[E	NV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB166839.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB167057.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

ble Number	Parameter	Units	LOR	Result
67053.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg%		100

ticides in Soil OP

				DO: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB167053.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.5 <0.5 0.5 <0.5	
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	104
		0/		
	d14-p-terphenyl (Surrogate)	%	-	104
PAH (Polynuclear Aromatic Hydrocarbons) in Soil	d14-p-terphenyl (Surrogate)	%		
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Sample Number	d14-p-terphenyl (Surrogate) Parameter	% Units	Meth	od: ME-(AU)-[ENV]AN42
			Meth LOR	od: ME-(AU)-[ENV]AN42 Result
Sample Number	Parameter	Units	Meth LOR 0.1	od: ME-(AU)-[ENV]AN42 Result <0.1
Sample Number	Parameter Naphthalene	Units mg/kg	Meth LOR 0.1 0.1	od: ME-(AU)-[ENV]AN42 Result <0.1 <0.1
Sample Number	Parameter Naphthalene 2-methylnaphthalene	Units mg/kg mg/kg	Meth LOR 0.1 0.1 0.1	od: ME-(AU)-[ENV]AN42 Result <0.1 <0.1 <0.1
Sample Number	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene	Units mg/kg mg/kg mg/kg	Meth LOR 0.1 0.1 0.1 0.1 0.1	Dd: ME-(AU)-[ENV]AN42 Result <0.1 <0.1 <0.1 <0.1 <0.1
Sample Number	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene	Units mg/kg mg/kg mg/kg mg/kg	Meth LOR 0.1 0.1 0.1 0.1 0.1 0.1	Dd: ME-(AU)-[ENV]AN42 Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Sample Number	Parameter Naphthalene 2-methylnaphthalene 1-methylnaphthalene Acenaphthylene Acenaphthene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Meth LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Od: ME-(AU)-[ENV]AN420 Result <0.1

METHOD BLANKS

SE189065 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Param Units Result LB167053.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(a)anthracene mg/kg Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 <0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates 100 d5-nitrobenzene (Surrogate) % 2-fluorobiphenyl (Surrogate) % 104 d14-p-terphenyl (Surrogate) % 104 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Parameter Units LOR LB167053.001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 <0.2 Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 100 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Result Parameter Units LOR LB167056.001 Arsenic, As mg/kg <1 1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 < 0.3 <0.5 Copper, Cu 0.5 mg/kg 0.5 <0.5 Nickel, Ni mg/kg Lead, Pb mg/kg 1 <1 Zinc, Zn 2 <2.0 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Units LOR Result Parameter LB166853.001 Arsenic, As <1 µg/L 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 <1 Lead, Pb 1 µg/L Nickel. Ni <1 µg/L 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Parameter Units Result LB167053.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total mg/kg 110 <110 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Result Sample Number Parameter LB167052.001 Monocyclic Aromatic Benzene mg/kg 0.1 < 0.1 Hydrocarbons Toluene 0.1 <0.1 mg/kg Ethylbenzene 0.1 <0.1 mg/kg m/p-xylene mg/kg 0.2 < 0.2 o-xylene mg/kg 0.1 <0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg

METHOD BLANKS

SE189065 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB167052.001	Surrogates	Dibromofluoromethane (Surrogate)	%	-	78
		d4-1,2-dichloroethane (Surrogate)	%	-	85
		d8-toluene (Surrogate)	%	-	80
		Bromofluorobenzene (Surrogate)	%	-	77
	Totals	Total BTEX	mg/kg	0.6	<0.6
Volatile Petroleum Hy	drocarbons in Soil			Metho	od: ME-(AU)-[ENV]AN43
Sample Number		Parameter	Units	LOR	Result
LB167052.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	78
		d4-1,2-dichloroethane (Surrogate)	%	-	85
		d8-toluene (Surrogate)	%	-	80

Method: ME-(AU)-IENVIAN002

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-[ENVJAN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189065.010	LB167057.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0

Moisture Content

							······································					
	Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %			
SE189065.010 LB167055.011 % Moisture %w/w 0.5 5.7 4.5	SE189065.010	LB167055.011	% Moisture	%w/w	0.5	57	4.9	49	14			

OC Pesticides in Soil

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E189065.013	LB167053.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0	
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0	
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	30	4
Pesticides in S	oil						Meth	od: ME-(AU)-	
iginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
189065.009	LB167053.024		Dichlorvos	ma/ka	0.5	< 0.5	<0.5	200	0

JF Festicides III (5011					Meur	00. ME-(AU)-	EINV JAINA2
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189065.009	LB167053.024	Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
		Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
		Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
		Malathion	mg/kg	0.2	<0.2	<0.2	200	0
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
		Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
		Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
		Ethion	mg/kg	0.2	<0.2	<0.2	200	0
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
		Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
AH (Polynuclear	Aromatic Hydrocarbons) in Soil					Meth	od: ME-(AU)-	ENVJAN4
Original	Duplicate	Parameter	Units	LOR				

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD '
E189065.009	LB167053.024		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
E100000.000	LD101000.024		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	0.1	0.1	121	18
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	0.4	0.4	57	5
			Pyrene	mg/kg	0.1	0.4	0.4	65	4
			Benzo(a)anthracene		0.1	0.1	0.1	101	
			Chrysene	mg/kg	0.1	0.1	0.1	101	9
				mg/kg				97	C
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.2		0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	163	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0.1	135	(
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	(
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	(
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	(
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td> mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>(</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	(
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>131</td><td>(</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	131	(
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>129</td><td>(</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	129	(
			Total PAH (18)	mg/kg	0.8	1.3	1.3	92	(
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	(
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	(
	1 8 4 9 7 9 5 9 9 9 9		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	:
189065.014	LB167053.022		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	(
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	(
			1-methylnaphthalene	mg/kg	0.1	0.2	0.2	81	1
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene	mg/kg	0.1	0.2	0.2	84	
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	184	
			Pyrene	mg/kg	0.1	<0.1	<0.1	173	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	(
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>(</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	(
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>(</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	(
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>(</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	(
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	
Bs in Soil							Meth	nod: ME-(AU)-	(ENV)
	Duplicate		Parameter	Units	LOR	Original	Duplicate		RP
riginal									

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189065.013	LB167053.022	Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
		Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PCBs in Soll (cont			Parameter	Units	LOR	Original		od: ME-(AU)	
Original	Duplicate		Parameter			Original		Criteria %	
SE189065.013	LB167053.022		Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
		-	Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	4
otal Recoverable	Elements in Soil/Wa	ste Solids/Materials	by ICPOES				Method: ME-	(AU)-[ENV]A	N040/A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE189065.010	LB167056.014		Arsenic, As	mg/kg	1	9	7	42	23
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	5.1	5.0	40	2
			Copper, Cu	mg/kg	0.5	7.4	7.3	37	1
			Nickel, Ni	mg/kg	0.5	2.8	3.1	47	11
			Lead, Pb	mg/kg	1	18	100	32	140
			Zinc, Zn	mg/kg	2	61	60	33	2
'BH /Total Bassy	orable Hydrocorbone) in Soil					Moth	od: ME (ALI)	ТЕМЛА
	erable Hydrocarbons) in Soli						od: ME-(AU)	
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	
SE189065.009	LB167053.023		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE189065.014	LB167053.024		TRH C10-C14	mg/kg	20	30	24	104	22
			TRH C15-C28	mg/kg	45	89	69	87	25
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	120	<110	134	8
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	39	32	100	20
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	39	32	100	20
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
/OC's in Soil							Meth	od: ME-(AU)	-IENVIA
	Dunlisste		Demonster	11	100	Oniminal			
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
SE189065.010	LB167052.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	C
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.2	50	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.8	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.2	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.8	50	0
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	C
SE189065.015	LB167052.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	C
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.3	50	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.5	50	2
				··· ·· // ···	-	4.4	4.3	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.3	50	
			d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg	-	4.4 3.9	4.3 3.8	50	2

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (cor	ntinued)						Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189065.015	LB167052.025	Totals	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
Volatile Petroleum	Hydrocarbons in Soi	I					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE189065.010	LB167052.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.2	30	1
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.8	30	3
			d8-toluene (Surrogate)	mg/kg	-	4.3	4.2	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.8	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE189065.015	LB167052.025		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.3	30	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.5	30	2
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.3	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	3.8	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167057.002	Mercury	mg/kg	0.05	0.18	0.2	70 - 130	88

OC Pesticides in Soil

	511							
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery ^o
LB167053.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	124
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	125
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	113
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	124
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	114
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	108
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	90
P Pesticides in Soi	bil						Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB167053.002		Dichlorvos	mg/kg	0.5	2.1	2	60 - 140	105
		Diazinon (Dimpylate)	mg/kg	0.5	2.1	2	60 - 140	107
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	95
		Ethion	mg/kg	0.2	2.1	2	60 - 140	105
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
	Surrogates	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.5 0.5	0.5	40 - 130 40 - 130	102 98
'AH (Polynuclear Al		d14-p-terphenyl (Surrogate)		-		0.5		98
'AH (Polynuclear A l Sample Number		d14-p-terphenyl (Surrogate)		LOR		0.5	40 - 130	98
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil	mg/kg	-	0.5	0.5	40 - 130 Nethod: ME-(A l	98 U)-[ENV]AN 4
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter	mg/kg Units	LOR	0.5 Result	0.5 Expected	40 - 130 Method: ME-(A Criteria %	98 U)-[ENV]AN4 Recovery
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene	mg/kg Units mg/kg	- LOR 0.1	0.5 Result 4.4	0.5 Expected 4	40 - 130 Method: ME-(Al Criteria % 60 - 140	98 U)-[ENV]AN4 Recovery 109
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	0.5 Result 4.4 4.8	0.5 Expected 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140	98 U)-[ENV]AN Recovery 109 120
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3	0.5 Expected 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	98 U)-[ENV]AN Recovery 109 120 107
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6	0.5 Expected 4 4 4 4 4	40 - 130 Method: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	98 Recovery 109 120 107 116
Sample Number		d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6 4.4	0.5 Expected 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	98 U)-[ENV]AN Recovery 109 120 107 116 111
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.4 4.2	0.5 Expected 4 4 4 4 4 4 4 4	40 - 130 Vethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	98 W)-[ENV]AN Recovery 109 120 107 116 111 106
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	- 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.2 4.2 4.2	0.5 Expected 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	98 U)-[ENV]AN Recovery 109 120 107 116 111 106 104
Sample Number	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.2 4.2 4.2 4.3	0.5 Expected 4 4 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140	98 U)-[ENV]AN Recovery 109 120 107 116 111 106 104 108
Sample Number	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.2 4.2 4.2 4.3 0.5	0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130	98 U)-[ENV]AN Recovery 109 120 107 116 111 106 104 108 98
• •	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.2 4.2 4.2 4.3 0.5 0.5	0.5 Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	98 U)-[ENV]AN Recovery 109 120 107 116 111 106 104 108 98 102 98
Sample Number LB167053.002	Aromatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	0.5 Result 4.4 4.8 4.3 4.6 4.4 4.2 4.2 4.2 4.3 0.5 0.5	0.5 Expected 4 4 4 4 4 4 4 4 0.5 0.5 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	98 U)-[ENV]AN Recovery 109 120 107 116 111 106 104 108 98 102 98

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	in Soll/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB167056.002	Arsenic, As	mg/kg	1	360	336.32	79 - 120	108
	Cadmium, Cd	mg/kg	0.3	420	416.6	69 - 131	101
	Chromium, Cr	mg/kg	0.3	38	35.2	80 - 120	107
	Copper, Cu	mg/kg	0.5	360	370.46	80 - 120	97
	Nickel, Ni	mg/kg	0.5	210	210.88	79 - 120	99
	Lead, Pb	mg/kg	1	100	107.87	79 - 120	94
	Zinc, Zn	mg/kg	2	310	301.27	80 - 121	103
Trace Metals (Dissolved) in W	Vater by ICPMS				N	/lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB166853.002	Arsenic, As	µg/L	1	18	20	80 - 120	91
	Cadmium, Cd	µg/L	0.1	21	20	80 - 120	106
	Chromium, Cr	μg/L	1	22	20	80 - 120	112
	Copper, Cu	µg/L	1	23	20	80 - 120	115
	Lead, Pb	μg/L	1	21	20	80 - 120	104
	Nickel, Ni	µg/L	1	22	20	80 - 120	109
	Zinc, Zn	μg/L	5	22	20	80 - 120	110

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Poundo Number		Devenue	Units	LOR	Deput	Evenented	Criterie 4/	Decoverne
Sample Number		Parameter			Result	Expected	Criteria %	Recovery %
LB167053.002		TRH C10-C14	mg/kg	20	43	40	60 - 140	108
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	100
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16	mg/kg	25	41	40	60 - 140	103
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	93
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
OC's in Soil						1	Nethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB167052.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	83
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	81
		Ethylbenzene	mg/kg	0.1	2.4	2.9	60 - 140	83
		m/p-xylene	mg/kg	0.2	4.9	5.8	60 - 140	84
		o-xylene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	85
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	87
		d8-toluene (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
olatile Petroleum I	Hydrocarbons in S	oil				1	Method: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
B167052.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	87
		TRH C6-C9	mg/kg	20	21	23.2	60 - 140	88
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	85
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	87
		d8-toluene (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
						-		
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved	d) in Water				Met	hod: ME-(AU)-	ENVJAN31	(Perth)/AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE188919.002	LB166839.004	Mercury	mg/L	0.0001	0.0060	-0.0164	0.008	75

Mercury in Soil

QC Sample Sample Number Parameter Units LOR Result Original Sp						hod: ME-(AU	J)-[ENV]AN312	
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE189065.001	LB167057.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	102

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E189065.002	LB167053.023		Naphthalene	mg/kg	0.1	4.3	<0.1	4	108
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	_
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.4	<0.1	4	111
			Acenaphthene	mg/kg	0.1	4.5	<0.1	4	112
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.5	<0.1	4	112
			Anthracene	mg/kg	0.1	4.3	<0.1	4	108
			Fluoranthene	mg/kg	0.1	4.2	<0.1	4	105
			Pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg) 0.2	4.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg</td><td>) 0.3</td><td>4.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg) 0.3	4.3	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg) 0.2	4.2	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	35	<0.8	-	-
	Su	irrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	92
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	98
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	94
otal Recoverab	le Elements in Soil/Waste S	Solids/Materi	als by ICPOES				Method: ME	E-(AU)-[ENV	JAN040/AN3
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE189065.001	LB167056.004		Arsenic, As	mg/kg	1	51	11	50	80
			Cadmium, Cd	mg/kg	0.3	45	<0.3	50	91
			Chromium, Cr	mg/kg	0.3	53	8.5	50	88
			Copper, Cu	mg/kg	0.5	58	12	50	91
			Nickel, Ni	mg/kg	0.5	54	11	50	86
			Lead, Pb	mg/kg	1	53	10	50	86
			Zinc, Zn	mg/kg	2	83	44	50	79
race Metals (Di	ssolved) in Water by ICPMS	S					Met	hod: ME-(Al	J)-[ENV]AN3
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE189008.001	LB166853.004		Arsenic, As	µg/L	1	22	3	20	96
			Cadmium, Cd	µg/L	0.1	21	<0.1	20	105
			Chromium, Cr	µg/L	1	23	2	20	106
			Copper, Cu	µg/L	1	21	<1	20	105
			Lead, Pb	µg/L	1	22	2	20	99
			Nickel, Ni	µg/L	1	53	33	20	99
			Zinc, Zn	µg/L	5	25	<5	20	109
RH (Total Reco	verable Hydrocarbons) in S	Soil					Mett	hod: ME-(Al	J)-[ENV]AN4
			Parameter	Units	LOR	_			

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

•	· ·	ns) in Soll (continue	•		1.05			nod: ME-(Al	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE189065.002	LB167053.022		TRH C10-C14	mg/kg	20	41	<20	40	103
			TRH C15-C28	mg/kg	45	<45	<45	40	90
			TRH C29-C36	mg/kg	45	<45	<45	40	98
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	38	<25	40	95
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	38	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	105
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
OC's in Soil							Mett	nod: ME-(Al	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E189065.001	LB167052.004	Monocyclic	Benzene	mg/kg	0.1	2.4	<0.1	2.9	83
		Aromatic	Toluene	mg/kg	0.1	2.4	<0.1	2.9	81
			Ethylbenzene	mg/kg	0.1	2.4	<0.1	2.9	82
			m/p-xylene	mg/kg	0.2	5.0	<0.2	5.8	85
			o-xylene	mg/kg	0.1	2.4	<0.1	2.9	82
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.3	-	81
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.4	-	94
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.7	-	88
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	4.0	-	86
		Totals	Total Xylenes	mg/kg	0.3	7.3	<0.3	-	-
			Total BTEX	mg/kg	0.6	15	<0.6	-	-
latile Petroleu	m Hydrocarbons in S	oil					Meth	nod: ME-(Al	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E189065.001	LB167052.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	88
			TRH C6-C9	mg/kg	20	<20	<20	23.2	83
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.3	-	81
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.7	4.4	-	94
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.7	-	88
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.3	4.0	-	86
		VPH F	Benzene (F0)	mg/kg	0.1	2.4	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	100

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service .
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS	Ø			С	HAI	0 0	FC	UST	OD	Y 8	A A	NALYS	SIS	REQUEST				Page 1	_of_3	3
SGS Environmental Se	rvices	Compar	y Nam	e:	Valley	Civilal	D							ject Name/No:	P1678 -	Ko	TAP	A		
Unit 16, 33 Maddox Str		Address	:		3/62 S	andrin	gham	Avenu	e Tho	rnton	2322		_	chase Order No:	03787	_				
Alexandria NSW 2015				_				-					-	sults Required By:	0429 496 618					
Telephone No: (02) 859			Manuel	-	Malcol	m Ade	ion						_	ephone: csimile:						
Facsimile No: (02) 85	940499	Contact	Name:	-	Malcol	in Aur	en						-		malcolm.adrien				uck@v	clab.com.au
Email: au.samplereceipt.syd	Iney@sgs.com												Em	nail Results:	monica.esposite	o@vcl	ab.co	m.au		
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL 17	ON HOLD	CL-10	CL 2	512									
BH4-0.15-0.25	7/2/2019	1		X		1	×													
BH4-0.5-0.6	7/2/2019			X		1		×					_		SGS EHS	Alexa	ndria	Laborator	У	
BH4-1.2-1.3	7/2/2019	2		X		1			×											
BHS-0.15-0.25	7/2/2019	3		x		1	×													
BHS-0.8-10	7/2/2019	4		x		1			\times		_				SE189	1061	5 0	00		
BHS-1.2-1.3	7/2/2019			X		1		×							Beceived:	11-	Feb-	-2019		
BH6-0.15-0.25	7/2/2019	5		X		1	X						-		-					
BHG-0.7-0.8	7/2/2019	6		X		1			×							_	_			
BH7-0.15-0.25	7/2/2019	7		X		1	×													1 19 1
Relinquished By: Monic	n Espesi		ate/Tim		3/2/	19						ived By:	8	(AAA)	Date/Time	1	(PL	EB19		1030
Relinquished By:			ate/Tim)					ived By:	0	, dim	Date/Time		tatio	a No:		
Samples Intact: Yes/ No			empera		Ambie	ent / C	Killed		_	_	Sam	ple Cooler	Seal	ed: Yes/No	Laborator	y Quo	Jalio	n NO.		
0		C	ommer	nts:												-				

SGS		CHAIN OF CUSTODY & ANALYSIS													EST				1	Page _	L of	3		
SGS Environmental Se	Compan	Company Name:				Valley Civilab									Project Name/No:			- Ka	OTAF	21				
Unit 16, 33 Maddox St			Address:			3/62 Sandringham Avenue Thornton						n 2322			Purchase Order No:		_0	03487						
Alexandria NSW 2015															Results Required By:			0429 496 618						
	Telephone No: (02) 85940400														Telephone:		0429	9 496 6	18					
Facsimile No: (02) 85	940499	Contact	Contact Name:			Malcolm Adrien									Facsimile:			malcolm.adrien@vclab.com.au; jake.duck@vclab.com.au;						m.au;
Email: au.samplereceipt.sydney@sgs.com													E			mon	monica.esposito@vclab.com.au							
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL 17	ON HOLD	CT 10	CL 2	CLS													
347-07-0.8	7/2/2019	R		X		1			×															
B48-0.15-0.25	7/2/2019	9		x		1	×																	
BH8-0.8-0.9	7/2/2019	10		x		1			×										_					
BH8-1.2-1.3	7/2/2019			X		1		×																
BH11-0.15-0.25	7/2/2019	11	1	X		1 '	X																	
8411-1.3-15	7/2/2019	(2	-	X		1	it i		×															
B#13-0.15-0.25	7/2/2019	13		X		1	×																	
BH13-0.6-0.7		(4	+-	x	1	1			×															
BH13-15-1.6	7/2/2019		-	x	1	1		×																
Relinquished By: MQNIGA ESPOSIP			Date/Time: 08/2/19 R									Received By: SILAAD						Date/Time (1FEB) (030						
Relinquished By:	CONTRACT IN THE REAL PROPERTY OF	Date/Time: Red										Received By:					Date/Time							
Samples Intact: Yes/ No													mple Cooler Sealed: Yes/ No					Laboratory Quotation No:						
		ommer	_											U										

	·····									• • • •					· · · · · · · · · · · · · · · · · · ·									
SGS			CHAIN OF CUSTODY & ANALYSIS REQUEST															Page <u>3</u> of <u>3</u>						
SGS Environmental	SGS Environmental Services Unit 16, 33 Maddox Street		Company Name; Address: Contact Name:			Valley Civilab 3/62 Sandringham Avenue Thornton 2322									Project Name/No; Purchase Order No; Results Required By; Telephone;			PIG7B - KOTARA						
																		03787						
Alexandria NSW 2015 Telephone No: (02) 85940400 Facsimile No: (02) 85940499																		Malcolin Adrien						
																		18						
		Contact				olm À	drien						!	Facsimile:				1 0						
Email: au.samplereceipt.s												Ŀ	Email Results:			malcolm.adrien@vclab.com.au; jake.duck@vclab.com.au; monica.esposito@vclab.com.au								
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL 47	ON HOLD	<u>م</u>		CLS													
WP1	07/2/2019	15		X		1			×					-		_								
RIN	07/2/2019	[6		1						×								}		 •			···	
TRIPSPIKE	07/2/2019	17		 			[×									She	<u>~</u>	.		
TRIP BLANK	07/2/2019	18		+							$\overline{\mathbf{x}}$									Jel" JElo		te.		
	07/2/2019																					T		
	07/2/2019																			مهرا بم	wh	····· .		
	07/2/2019												+		·	-								
	07/2/2019		·		·					-														
	07/2/2019			·							·					<u> </u>								
Relinquished By: MONIC	a #505:00	Date	L ≥∕∏ime	<u> </u>	121	10			<u> </u>		2ácoli	red By:		<u>ار ہے</u>	<u></u>		Data	ime						
Relinquished By: WONA 长路。 Date/Time: S Relinquished By: Date/Time:					Receive							·					Date/Time 1176 Blg 1030							
Samples Intact: //es/ No																	/ Quotation No:							
-		Comments:																						
												.						_				·		

Annex H

